
Disaggregated Data Centres – Simulation & Analysis of IT &

Network Resource Allocation Algorithms

Ashish Tibrewal

April 2016

Project Thesis submitted in support of the Degree of Master of

Engineering in Computer Science and Electronics

Department of Electrical & Electronic Engineering
University of Bristol

Abstract

Data centres are under severe pressure to meet the current globally growing demands of
cloud, big data, mobile, and social collaboration applications. Yet, present data centres
are built with conventional architectures in mind that can take days or weeks to provi-
sion new services and typically run with low server utilisation and efficiency, and limited
flexibility incurring higher capital investments and driving up operational costs. To tackle
this, modern data centres require a different approach – the disaggregated architecture.
Disaggregated architectures are systems in which there are segregated pools of resources
that are decoupled and can be allocated on demand, therefore, increasing the utilisation
and efficiency. At the core of a disaggregated architecture lies a management framework
that controls all the resource pools and creates a wide range of logical, virtual systems
based on workload-specific demands. The modular arrangement in a disaggregated archi-
tecture also allows for statistical time division multiplexing (STDM), a technique used for
dynamic bandwidth allocation (DBA) making it possible for disaggregated data centres
to cope with high network demands. The application of dynamic bandwidth allocation
in disaggregated architectures makes it possible to cover peak network demands, whilst
not under-utilising the same resources during non-peak conditions, thus ensuring optimal
utilisation at all times. Disaggregation can significantly improve the scope for scalability,
flexibility and versatility. Efficient resource allocation and workload scheduling is a funda-
mental requirement in data centres, particularly those with a disaggregated architecture,
and any high-performance computing (HPC) system, be it, a cluster, grid or cloud com-
puting platform. Globally optimal algorithms can yield better performance, increase the
overall compute density and the number of requests served, i.e. virtual machines/systems
created.

i

Declaration & Disclaimer

I declare that the work in this report was carried out in accordance with the requirements
of the University’s Regulations and Code of Practice for Taught Programmes and that it
has not been submitted for any other academic award. Except where indicated by specific
reference in the text, this work is my own work. Work done in collaboration with, or
with the assistance of others, is indicated as such. I have identified all material in this
report which is not my own work through appropriate referencing and acknowledgement.
Where I have quoted or otherwise incorporated material which is the work of others, I
have included the source in the references. Any views expressed in the report, other than
referenced material, are those of the author.

Author Date

ii

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my project supervisor
Dr. Georgios Zervas of the Faculty of Engineering at the University of Bristol for his
continuous support, guidance and motivation. The door to Prof. Zervas’ office was always
open whenever I ran into a trouble spot or had a question about my research or writing.
He consistently allowed this thesis to be my own work, but steered me in the right the
direction whenever he thought I needed it.

I would like to thank the experts who were involved in the poster assessment for
this research project: Dr. Geoff Hilton and Dr. Nick Simpson. Without their passionate
participation, input and feedback, the poster presentation would not have been a success.

Finally, I must also express my very profound gratitude to my parents and to my elder
brother for providing me with unfailing support and continuous encouragement throughout
my years of study and through the process of researching and writing this thesis. This
accomplishment would not have been possible without them.

iii

Contents

Abstract i

Declaration & Disclaimer ii

Acknowledgements iii

Contents v

List of Figures vii

List of Tables viii

List of Algorithms viii

List of Abbreviations ix

1 Introduction 1

2 Data Centre Architectures 5
2.1 Aggregated Server-Centric Architecture . 5
2.2 Disaggregated Resource-Centric Architecture 7
2.3 Data Centre Network (DCN) Architecture 12

3 Simulator Framework 14
3.1 Data Centre & Data Centre Network Generation 14

3.1.1 Configuration Files . 14
3.1.2 Data Centre Architecture . 17
3.1.3 Data Centre Network Architecture 18

3.2 Input Request Generation . 19
3.2.1 Request Constraints . 19
3.2.2 Request Database . 21

3.3 Resource Allocation . 21
3.4 Results & Analysis . 23

4 Resource Allocation Algorithms 24
4.1 Formal Definition . 25

4.1.1 Bin packing problem . 25
4.1.2 Problem Formalisation . 27

4.2 Graph Theory Algorithms . 29
4.2.1 Breadth-first Search (BFS) . 29
4.2.2 K Shortest Path – Yen’s Algorithm 30

4.3 First Fit Resource Allocation . 32
4.4 Best Fit Resource Allocation . 37

iv

4.5 Network-Unaware Locality Based Resource Allocation 39
4.6 Network-Aware Locality Based Resource Allocation 42

5 Results 44
5.1 Blocking Probability . 44
5.2 IT & Network Utilisation . 49
5.3 Allocation Time . 54
5.4 Latency . 56
5.5 Overall Performance Comparison . 59

6 Conclusion 62

7 Future Work 63

References x

Appendices xiii
A Source Code Reference . xiii
B Software/Tools Listing . xv

v

List of Figures

1 Diversity of data centre workloads illustrating the disparity of server pro-
visioning required to optimise servers for specific workloads. (Image: Ten-
cent & Intel Corporation) [2] . 2

2 Intel’s proprietary disaggregated architecture technology – Intel ® Rack
Scale Architecture (RSA). (Image: Intel Corporation) [1] 3

3 Aggregated architecture of a conventional server-centric data centre. 5
4 Physical server (1-to-1), virtualised aggregated server (1-to-n), and software-

managed virtualised disaggregated server (m-to-n). (Image: Tencent & In-
tel Corporation) [2] . 6

5 Cumulative distribution function of relative disk/memory capacity demand
to CPU usage for tasks in Google’s data centre. [7] 7

6 Software-defined disaggregated data centre IT stack that can be used to
build hybrid clouds. Hybrid clouds are a combination of on-premises private
clouds and off-premises public clouds. (Image: VMware) [9] 8

7 Comparison between aggregated server-centric architecture and disaggre-
gated resource-centric architecture. 9

8 Disaggregated architecture of a resource-centric data centre illustrating dif-
ferent rack configurations along with the intra-rack switch hierarchy. The
large blue boxes represent racks; within each, the green boxes represent
blades that contain several configurable slots. The dotted blue line shows
an example of an intra data centre connection; in this case, it is a connection
between ToRs from different racks. 9

9 The six axes of scalability. (Image: Ericsson) [8] 10
10 A single system architecture addresses all major workloads. (Image: Erics-

son) [8] . 11
11 Basic structure of a layered DCN consisting the core, aggregate and access

layer switches. (Image: Cisco Systems) [10] 12
12 High-level simulator flow chart illustrating the six major steps involved in

the simulation process. 14
13 The three different types of architectures that were used in the simulator.

The rack on the left illustrates the architecture of a completely homogeneous
rack; the rack in the centre illustrates the architecture of a heterogeneous
rack with homogeneous blades; and the rack on the right illustrates the
architecture of a heterogeneous rack with heterogeneous blades. 18

vi

14 An example connectivity graph illustrating the hierarchical structure cre-
ated by the simulator; it represents a data centre with three racks, four
blades in each rack, and three slots in each blade; each rack consists of
two top-of-rack (ToR) switches and each blade consists of two top-of-blade
switches. Each terminal node represents a slot whereas each non-terminal
nodes represent a switch, either a ToR or ToB switch. Note that edge/link
lengths are not to scale. 19

15 Network topologies supported by the simulator. 20
16 Graphs illustrating the discrete uniform distributions (with minimum and

maximum bounds) for each input request parameter. 21
17 Example heat map for a data centre containing heterogeneous racks with ho-

mogeneous blades. Each large rectangle represents a rack; each row within
this large rectangle represents a blade and each column represents a slot
within a blade. Black, white and grey rectangles represent CPU, memory
and storage slots respectively. 23

18 A simple algorithmic flow-chart illustrating the steps involved in the re-
source allocation process. 24

19 Comparison between blocking probabilities obtained from different resource
allocation algorithms. 46

20 Comparison between blocking causes obtained from different resource allo-
cation algorithms. 48

21 Comparison between IT and network resource utilisation obtained from
different resource allocation algorithms. 51

22 Comparison between network vs IT resource utilisation obtained from dif-
ferent resource allocation algorithms. 53

23 Comparison between allocation times and network utilisation obtained from
different resource allocation algorithms. 56

24 Comparison between latency allocations obtained from different resource
allocation algorithms. 59

25 Overall performance comparison between different algorithms. 60

List of Tables

1 Configurable data centre parameters. 15
2 Configurable link distance parameters. 15
3 Configurable link channel parameters. 15
4 Configurable network topology parameters. 16
5 Configurable resource unit size parameters. 16
6 Configurable switch delay parameters. 16
7 Configurable constraint (bound) parameters. 16
8 Configurable blade type parameters. 17

vii

9 Other configurable parameters. 17
10 Input/Request IT and network resource constraints/bounds. 20
11 An example entry extracted from the request database containing several

fields such as the IT and network resource requirements, holding time, IT
and network resource allocation statuses, etc. 22

12 List of source files developed and/or used through the course of this project. xiv
13 List of software/tools used through the course of this project. xv

List of Algorithms

1 Simulator script common to all algorithms. 25
2 Simulator function common to all algorithms. 25
3 Breadth-first search (BFS) algorithm . 29
4 Yen’s K shortest path algorithm . 30
5 Dijkstra’s algorithm . 32
6 First fit resource allocation algorithm . 33
7 Optimised network resource allocation algorithm 34
8 Best fit resource allocation algorithm . 37
9 Network-unaware locality based resource allocation algorithm 40
10 Modified breadth-first search (mBFS) algorithm 42

List of Abbreviations

API Application programming interface

ASIC Application-specific integrated circuit

BFS Breadth-first search

L1 L2 L3 Level 1, Level 2 & Level 3

CDF Cumulative distribution function

CPU Central processing unit

CR Contention ratio

CRAC Computer room air conditioning

DBA Dynamic bandwidth allocation

DCN Data center network

DIMM Dual in-line memory module

DRAM Dynamic random-access memory

viii

FIFO First-in first-out

FPGA Field-programmable gate array

GPU Graphics processing unit

GWh Gigawatt hour

HDD Hard disk drive

HPC High performance computing

IC Integrated circuit

ICT Information & communications technology

I/O Input/output

IT Information technology

LED Light emitting diode

mBFS Modified breadth-first search

NIC Network interface controller

OPCIe Optical peripheral component interconnect express

PCIe Peripheral component interconnect express

PIC Photonic integrated circuit

PUE Power usage effectiveness

RSA Rack Scale Architecture

RU Rack unit

SRAM Static random-access memory

SSD Solid-state drive

SSL Secure sockets layer

STDM Statistical time division multiplexing

TCO Total cost of ownership

ToB Top-of-blade

ToR Top-of-rack

YAML YAML Ain’t Markup Language

ix

1 Introduction

1 Introduction

A data centre is a facility that houses information and communications technology (ICT)
infrastructure that is used to process, communicate, and store digital data. Traditional
data centres follow the aggregated server-centric architecture, one in which blades (or
drawers) contained in racks are setup as servers, each with a certain amount of compute
resources (including hardware accelerators) such as CPUs and GPUs, memory resources
such as SRAMs (in the L1, L2 and L3 cache) and DIMMs containing DRAMs, and large
capacity secondary storage such as HDDs and SSDs. Server-centric architectures have a
relatively static computing infrastructure with a predefined amount of servers.

This thesis investigates a different design approach to data centres – the disaggre-
gated resource-centric architecture, one in which there are modular pools of compute,
memory, storage and network resources interconnected using a communication network.
The modular arrangement in a disaggregated architecture allows, amongst other advan-
tages, statistical multiplexing (a technique used for dynamic bandwidth allocation), which
markedly improves performance. Other benefits of disaggregation include improved oper-
ational efficiency through increased resource utilisation and interoperability, accelerated
service delivery, shared cooling, improved power management and lower total cost of own-
ership (TCO). Disaggregation makes it possible for data centres to cope with high demands
and varying workloads whilst ensuring that the same resources are not under utilised dur-
ing non-peak conditions. Disaggregation also enables resource-specific upgrades that can
markedly improve the scope for scalability, a factor that needs to carefully considered when
designing and deploying new data centres. Using a software management framework in a
disaggregated architecture allows a wide range of virtual systems to be built on demand.
These management frameworks not only enable (rack-wide) resource and policy manage-
ment, but also provide standard firmware and software APIs that expose the hardware
resources to the orchestration layer via a standard interface. [1] Disaggregation decouples
services from the underlying infrastructure; this decoupling not only offers more flexibility
when designing new data centres, but also makes it possible to rapidly re-architect exist-
ing data centres. This is particularly useful when upgrading or scaling only a part of the
infrastructure; instead of having to re-architect the entire system due to this change, only
the components that need to be upgraded are modified. In this ever-changing technology
generation, this flexibility is vital to data centres.

Disaggregated data centres can be configured and laid out in several different ways,
each configuration and the layout of resources can have a distinctly different performance;
these configurations are discussed in detail further in this thesis. Amongst other challenges,
the major challenge with disaggregated architectures is the requirement of super-fast inter-
connects. Traditional interconnect technologies such as Ethernet, InfiniBand, PCI Express
(PCIe), and even super-fast optical fibre technology is not enough to cope with the la-
tency and bandwidth requirements similar to those available on on-board connections.
To overcome these issues, disaggregated architectures require advanced silicon photonics1

1Silicon photonics is an emerging technology that utilises silicon to make optical devices that can
be integrated into and/or stacked up alongside standard integrated circuits (ICs). [5] [4] 1

1 Introduction

Figure 1: Diversity of data centre workloads illustrating the disparity of server provision-
ing required to optimise servers for specific workloads. (Image: Tencent & Intel Corpora-
tion) [2]

technology – a technology which integrates a hybrid silicon laser and electronic compo-
nents onto the same die. Since, electrical interconnections in computer motherboards are
close to being maxed out physically and electronically, the need to replace electrons with
photons for inter-device communication is essential for disaggregation to be successful.
The appropriate application of silicon photonics and advanced optical interconnect tech-
nology can remove connectivity bottlenecks in data centres – this is particularly crucial
for data centres providing real-time services. Current technologies use discrete electronics
and optics to switch between optical and electrical signals similar to that described by
the Fibre-Optic Association. Electrical signals enter the transmitter and are converted
into optical signals (using LEDs and/or lasers). These optical signals travel through the
connected fibre-optic channels and once it reaches its destination, the exact inverse pro-
cess occurs at the receiver – the light detector at the receiver converts the optical signals
into electrical impulses. Although this technology has been around for many years, and
it works well, it is expensive and labour intensive, primarily due to all the individual
electronic components such as amplifiers, drive optics, lasers, and microchips, etc. Due
to this, researchers have investigated silicon as an alternative to using all these separate
components, but studies have found that silicon has several undesirable characteristics.
“Silicon is a poor candidate for photonic applications because its electronic structure has
an ‘indirect band gap’, making it a poor light emitter. This means that when an electron
and hole combine in silicon, the resulting energy released is more likely to be emitted as
vibrational energy, or phonons rather than as photons,” as explained by Mario Paniccia,
director of Intel’s photonics technology laboratory. [3] Another issue that was discovered

2

1 Introduction

during these studies was that silicon lacks an electro-optic effect. In simple terms, this
means that when modulating optical signals, silicon is not known for its ability to change
optical properties in response to an electrical field. [3] In late 2013, Fujitsu, a Japanese
multinational information technology equipment and services company, in collaboration
with Intel Corporation, announced that they would be releasing their first product using
silicon photonics – the Optical PCI Express (OPCIe) server in early 2017. [4] Although
silicon photonics technology is in its early development phase, its potential cannot be
underestimated.

Figure 2: Intel’s proprietary disaggregated architecture technology – Intel ® Rack Scale
Architecture (RSA). (Image: Intel Corporation) [1]

Industry leaders such as Intel Corporation, IBM and Ericsson are amongst the first
few to have already taken the initiative to generate the next-generation disaggregated data
centre technology. Intel’s proprietary disaggregated architecture solution, the Rack Scale
Architecture (RSA), shown in Figure 2, was unveiled in late 2013; it promises to be highly
efficient and scalable. Early adoption of Intel’s Rack Scale Architecture by Ericsson, to
build it’s next-generation hyperscale cloud platform, known as the Ericsson Cloud System
in the form of Ericsson HDS 8000 server addresses today’s growing challenges for reliable
and robust connectivity, real-time data, network efficiency and on-demand service delivery
with integrity, governance, and automation. [6]

The primary research area covered in this thesis is based on resource allocation al-
gorithms in disaggregated architectures. Several different resource allocation algorithms
were developed and simulations were carried out for different types of disaggregated archi-
tectures. The performance of each algorithm was analysed based on different performance
metrics such as blocking probability, resource utilisation, latency, etc. In summary, these
algorithms can be reduced to the standard multidimensional bin-packing problem. Re-
source allocation algorithms play a crucial role in determining the overall performance
of a data centre; globally optimal algorithms that are efficient can significantly increase

3

1 Introduction

resource utilisation, improve the overall compute density and the performance of data
centres in general. Detailed discussions of the algorithms developed are provided in the
Resource Allocation Algorithms section and an analysis on their performance is provided
in the Results section.

4

2 Data Centre Architectures

2 Data Centre Architectures

2.1 Aggregated Server-Centric Architecture

As discussed previously, traditional server-centric data centres are built using hundreds of
servers with the ability for each to function independently. Each of these servers contain a
predefined amount of compute, memory, storage and network resources, creating a static
infrastructure. Figure 3 shows the aggregated architecture of a conventional server-centric
data centre in which each rack consists of multiple server-blades, each with a predefined
amount of compute, memory and storage resources. The network architecture of data
centres consisting of the core, aggregate and access layers including its switch hierarchy is
discussed in detail in the Data Centre Network (DCN) Architecture section.1

Figure 3: Aggregated architecture of a conventional server-centric data centre.

Since most aggregated server-centric architectures are inflexible, existing data centres
that have adopted this approach contain servers that are not optimally configured for
their purposes – resulting in waste, operational inefficiency and low deployment density.
For example, in compute-dense applications, unused memory and hard disk drive slots
can negatively affect computing density; in memory-dense applications unused expansion
and hard disk drive slots waste server space that could be used for more memory; and
in storage-dense applications CPUs and memory might be overprovisioned. [2] Specialised
servers are created to mitigate this issue – resulting in new challenges to server resource
management, day-to-day maintenance, and overall data centre operations. All these factor
combined introduce an additional layer of complexity to data centre management and
maintenance. [2] CPU performance has been doubling every two years, whereas memory
performance and storage capacity have been advancing at a much slower rate; misaligned
technology advances such as these produce big gaps in server optimisation making it

1As this thesis aims to investigate the IT and network infrastructure of data centres, and allocation
algorithms; other design considerations such as mechanical & electrical infrastructure, power supply
management, cooling, security, and environmental issues, etc. have not been discussed in detail.

5

2.1 Aggregated Server-Centric Architecture

difficult to upgrade to more efficient processors, memory and storage without unnecessarily
discarding still-useful resources. [2]

Figure 4: Physical server (1-to-1), virtualised aggregated server (1-to-n), and software-
managed virtualised disaggregated server (m-to-n). (Image: Tencent & Intel Corpora-
tion) [2]

Virtualisation is a good midpoint phase in server optimisation that has a firm footing
in data centres today. There is no doubt that virtualisation and cloud implementations
have significantly improved resource utilisation in data centres, however, CPUs and mem-
ory in such environments are still often underutilised due to the static infrastructure and
granularity of server resources. [2] Figure 4 illustrates various models of data centre envi-
ronments. It can be seen that to increase capacity in the 1-to-1 single-server environment,
additional servers are required, thus leading to underutilisation. The 1-to-n virtualised
server model uses a single physical server that can divide its physical resources across mul-
tiple virtual machines. This certainly does reduce the amount of idle resources but does
not completely eliminate inefficiencies. In comparison to these, the m-to-n disaggregated
server provides even greater efficiencies by only allocating resources based on the require-
ments. Cloud services remain virtualised at the software level, but resource-pooled servers
provide further virtualisation at the hardware level. [2] The hardware-level virtualisation
is provisioned by a resource management software; this is discussed in detail in the fol-
lowing section. The 1-to-n virtualised server and m-to-n disaggregated server approaches
are not contradictory, but complementary; resource-pooled servers can continue to run
virtualisation and cloud server software on logical servers and create virtual machines for
end-users. [2]

Figure 5 shows a plot of the memory-to-CPU and disk-to-CPU consumptions for tasks
in Google’s data centre; it can be seen that resource requirement is spread over more than
three orders of magnitude with approximately 70% of tasks requiring far less memory
as compared to CPUs; a similar trend follows for storage requirements. [7] Even with
support for virtualisation, such diverse requirements undoubtedly lead to underutilisation
of resources. To address the new challenges faced by data centres today and mitigate the
shortcomings of the conventional aggregated server-centric architecture, new designs such

6

2.2 Disaggregated Resource-Centric Architecture

Figure 5: Cumulative distribution function of relative disk/memory capacity demand to
CPU usage for tasks in Google’s data centre. [7]

as the disaggregated resource-centric architecture, that are more efficient and versatile
need to be considered and implemented.

2.2 Disaggregated Resource-Centric Architecture

With data volumes and internet traffic growing exponentially every year and business
needs changing dramatically, traditional data centres are too rigid to cope with this change
and complexity. Ninety percent of the world’s data has been created in the last five years
and more than 2.5 quintillion bytes are added to this everyday. [2] The worldwide mo-
bile data traffic is also projected to grow at a compounded rate of 57% for the next four
years and is expected to reach a throughput of 24.3 exabytes per month by 2019. [2] To
cope with this change and trends in data growth, data centres designs need a differ-
ent approach. Disaggregated data centres are software-defined data centres where the
virtualisation principles of abstraction, pooling and automation are not only applied to
transform the compute layer but also extended to all other data centre domains, viz. stor-
age, network, security and availability, etc. With such virtualisation, the management is
completely automated by software. The benefits of this virtualisation include improved
efficiency, control, agility and choice. With all services virtualised, resource utilisation
and automation can be dramatically increased, leading to higher capex and opex sav-
ings across the entire data centre. In a software-defined data centre, the management
layer is responsible for controlling the pools of compute, memory, network and storage;
dynamically allocating these resources to apps and services. [1] App provisioning, avail-
ability, security and compliance are all managed by policy-based automation resulting in
new levels of business agility and operational control. Software-defined data centres en-
able businesses to build non-vendor-specific infrastructure, therefore, increasing the scope
for change, adaptability and scalability. It is important to realise and understand that
with the exponentially growing need of IT capacity for businesses, it is going to be al-

7

2.2 Disaggregated Resource-Centric Architecture

most impossible for these businesses to financially sustain this growth without a change
in approach. A methodology to achieve steadily improving hyperscale performance is to
adopt and continuously iterate through the industrialisation cycle, one that comprises five
major steps; these include standardisation, combination (and consolidation), abstraction,
automation, and governance. [8]

Figure 6: Software-defined disaggregated data centre IT stack that can be used to build
hybrid clouds. Hybrid clouds are a combination of on-premises private clouds and off-
premises public clouds. (Image: VMware) [9]

Disaggregation decouples each hardware unit, i.e. each individual CPU, memory,
storage, or network unit, from every other hardware unit; this can be beneficial when
managing extreme (and diverse) workload conditions that present day data centres have
to handle. Studies have shown that data centres globally consume over 100 GWh per year
and is expected to exceed 130 GWh by the end of 2016. [2] As measured by the power
usage effectiveness (PUE) index defined by The Green Grid, CRAC (Computer room air
conditioning) units alone can consume as much as half of a data centre’s power needs. [2]

Disaggregated data centres also allow for better and more efficient power management
and cooling. These factors need to be considered carefully since they directly affect the
performance of data centres.

Figure 7 illustrates the differences between aggregated server-centric and disaggregated
resource-centric architectures. It can be seen that in comparison to resource-centric ar-
chitectures, server-centric architectures don’t provide much scope for customisation. Due
to the decoupling of resources, disaggregated architectures can be fully customised and if
needed, it can support custom ASICs (Application-specific integrated circuit) and FPGAs
(Field-programmable gate array). Disaggregation of I/O devices is fairly straightforward,
but the major challenge lies in memory disaggregation as it requires low latency, high
bandwidth links that can support speeds and capacity comparable to those achieved in
blades with on-board memory; ensuring this can guarantee that disaggregation would

8

2.2 Disaggregated Resource-Centric Architecture

(a) Current aggregated architecture. [7] (b) Future disaggregated architecture. [7]

Figure 7: Comparison between aggregated server-centric architecture and disaggregated
resource-centric architecture.

not negatively affect the performance of data centres. Figure 8 shows several rack-level
configurations possible in disaggregated architectures. The rack on the left is configured
to be completely homogeneous with homogeneous CPU blades, whereas the rack on the
right is configured to be heterogeneous with heterogeneous CPU and memory blades, and
homogeneous storage blades.

Figure 8: Disaggregated architecture of a resource-centric data centre illustrating differ-
ent rack configurations along with the intra-rack switch hierarchy. The large blue boxes
represent racks; within each, the green boxes represent blades that contain several config-
urable slots. The dotted blue line shows an example of an intra data centre connection; in
this case, it is a connection between ToRs from different racks.

As stated in a paper by Ericsson, the four-pillars of disaggregated architectures include

9

2.2 Disaggregated Resource-Centric Architecture

a (software) manager for multi-rack management, pooled system, scalable multi-rack stor-
age, and efficient configurable network fabric. [8] The software management layer exposes
hardware, firmware, and software APIs that enable management of resources and policies
across the entire data centre. [8] As discussed previously, the pooled system enables the
creation of virtual machines using pooled-resources that include compute, memory, stor-
age, and network based on the workload requirements. The scalable multi-rack storage
includes Ethernet connected storage that can be loaded with storage algorithms to support
a wide range of uses. [8] The efficient configurable network fabric comprises of the network
hardware such as NICs (Network interface controller), optical interconnect and manage-
ment that support a wide range of cost-effective network topologies. Most network designs
include the standard top-of-rack (ToR) switch but can be extended to utilise distributed
switches that remove several levels of switch hierarchy. [8].

Figure 9: The six axes of scalability. (Image: Ericsson) [8]

Resource-pooling requires a new software stack to manage resource discovery, resource
allocation, and resource monitoring, etc. that contains several layers, each providing a
distinct functionality. [2] The most crucial layer is the management layer; it is responsible
for providing APIs to manage low-level pooled resources and provides APIs that expose
the middle-layer software offered by public cloud vendors such as VMware, Microsoft, etc.
and OpenStack, which is an open-source software platform for cloud computing. [2] It is
important to note that these software stacks do not alter operations of any third-party
business software, such as Microsoft’s Azure, VMware’s VSphere1, or privately developed
hypervisors and management stacks – resource-pooled servers are only re-architected in
its hardware design and it is completely transparent from a software perspective. [2]

Disaggregation breaks the three-to-four year refresh cycle and can help facilitate in-
cremental resource-specific upgrades that is straightforward and non-disruptive. Figure 9
shows the six axes of scalability; each of these factors need to be considered carefully as

1Microsoft Azure is Microsoft’s proprietary cloud computing platform; VMware VSphere is
VMware’s proprietary cloud computing platform.

10

2.2 Disaggregated Resource-Centric Architecture

it directly affects the performance of data centres. These six factors include CPU core
count, DRAM size, storage capacity, storage performance, network capacity, and network
performance. [8]. The CPU core count and DRAM size directly impact the number of
applications the system can support. The storage capacity and storage performance im-
pacts the amount of data the system can store and it’s I/O capabilities respectively. The
network capacity, i.e. bandwidth, and network performance, i.e. latency, impact the inter
and intra system messaging, communication and throughput of the system. The differen-
tial rate of change in these six components drive the need to consider them separately as
part of the overall data centre life cycle management. [8]. Along with the disaggregated
architectural approach, the implementation of a single system architecture enables organ-
isations to systematically address all major workloads. In summary, a scalable unified
infrastructure management architecture can increase utilisation by enabling the allocation
of shared resources depending on the workload requirement without needing additional
data centre hardware. [8]

Figure 10: A single system architecture addresses all major workloads. (Image: Erics-
son) [8]

The combination of disaggregated hardware architectures with advanced optical inter-
connect and silicon photonics technology is capable of removing the traditional distance
and capacity, i.e. latency and bandwidth, limitations of electrical connections. As dis-
cussed previously, the major bottleneck in current data centres lies in its network inter-
connect; this especially poses a big challenge in disaggregated architectures since resource
pooling makes it significantly more difficult to satisfy the latency and bandwidth require-
ments; and only gets more difficult as the resource pools are placed further apart from
each other. To mitigate these issues, advanced optical interconnect and silicon photon-
ics technology need to deployed. Conventional commodity electronics technology used in
interconnects that span over 10 cm to 2 km need to be replaced by high capacity and
low latency optical links. Intel recently announced their protocol-neutral MXC connector
and ClearCurve optical fibre that promises to offer high speeds over long distances at a
relatively low cost and can be used throughout a data centre over existing technologies
as well as Terabit Ethernet. [2] One of the major challenges that the silicon photonics

11

2.3 Data Centre Network (DCN) Architecture

technology faces today is the creation of efficient silicon light sources that can be used
in silicon fabricated PICs (Photonic integrated circuits) and hybrid integrated circuits,
i.e. chips containing both electronics and photonics; making the technology affordable
and commercially available in large quantities are amongst a few other challenges that
need to be addressed. As stated by Intel’s former senior vice president, Pat Gelsinger,
“Today, optics is a niche technology. Tomorrow, it’s the mainstream of every chip that
we build.” [4]

2.3 Data Centre Network (DCN) Architecture

Data centre networks (DCNs) hold a crucial role in a data centre as it interconnects all
of the data centre resources together. In order to handle the growing demands of cloud
computing, high bandwidth low latency communication, and memory I/O performance
dependent applications, DCNs need to be highly efficient and scalable – most of today’s
data centres are constrained by the interconnection network. [10] Amongst several other
well-know DCN architectures, there are currently three major types – Three-tier DCN,
Fat tree DCN, and DCell.

Most DCN designs are based on a proven layered approach, one that has been tested
and improved over the past several years in some of the largest data centre implementa-
tions in the world. [10] The legacy layered DCN approach forms the basic foundation of
data centre design that seeks to improve scalability, performance, flexibility, resiliency and
maintenance. [10] Figure 11 shows the basic structure of a layered DCN design. The layered

Figure 11: Basic structure of a layered DCN consisting the core, aggregate and access
layer switches. (Image: Cisco Systems) [10]

three-tier DCN design consists of three major layers – the core, aggregation and access
layers. The core layer (layer 3) provides the high-speed packet switching backplane for
all flows going in and out of the data centre and connectivity to multiple aggregate mod-
ules. [10] The aggregate layer (layer 2) provides important functions such as service module

12

2.3 Data Centre Network (DCN) Architecture

integration, Layer 2 domain definitions, spanning tree processing, etc. [10] The aggregate
modules manage and control server-to-server multi-tier traffic flows and provide services
such as firewall, SSL offload, network analysis, and server load balancing to optimise and
secure applications. [10] The access layer (layer 1) is where the servers physically connect
to the (internal) network. It consists of modular switches, fixed configuration 1 or 2RU1

switches, and internal blade server switches. [10] Other DCN architectures that include the
fat tree and DCell aim to tackle problems faced by the three-tier DCN architecture, such
as cross-section bandwidth and over-subscription, etc. by deploying off-the-shelf network
switches using Clos topology and connecting each server to multiple other servers using
multiple NICs. Scalability in DCNs is another challenge that needs to be tackled carefully.

DCNs in a disaggregated architecture needs to be considered carefully as disaggre-
gation, i.e. resource pooling, can lead to higher latencies and an increase in bandwidth
usage. To overcome both these issues, advanced optical interconnect technology and silicon
photonics need to be deployed to replace standard electrical communication technology.
Silicon photonics can remove the overhead caused by the use of several different compo-
nents, such as optical waveguides, modulators, and photo-detectors, etc. in conventional
electro-optical devices by integrating most of these functions into a single device. As dis-
cussed in a paper by IBM researchers, memory disaggregation can only be successful when
ultra low latency links are available to connect disaggregated resources. [11] As disaggre-
gation leads to higher latencies and bandwidth usage, the paper also introduced a simple
cost model illustrated as follows,

G = MS − (CL+ CB)

where G is the net gain expected from memory disaggregation, MS is the memory savings
due to resource (memory) pooling, CL is the cost of increased latency, and CB is the
cost of increased bandwidth. [11] An important conclusion drawn in the paper stated that
potential benefits of memory disaggregation can only be achieved if it is implemented at the
rack level to minimise distance; and also suggested that additional layers of cache memory,
i.e. local memory acting as a cache to pooled remote memory, can aid in improving the
performance of disaggregated architectures. [11]

1RU is an acronym for ‘rack unit’ – a standard unit of measure that describes the height of electronic
equipment designed to mount in a 19-inch rack or a 23-inch rack. [12] 13

3 Simulator Framework

3 Simulator Framework

The simulator has been designed in MATLAB and uses its parallel execution feature (par-
for) to improve and speed up the simulation process. Figure 12 shows the six major steps
involved in the simulation process, each having a completely distinct role. The first step
in the simulation involves reading multiple DCN configuration files that contain several
configurable parameters; further discussion about these parameters is provided in the
Configuration Files section. The second step involves generating multiple requests based
on several predefined constraints. All generated requests are stored in a database, i.e.
a request database for resource allocation and future reference. The next step involves
setting up a parallel simulation environment using MATLAB’s parallel computing tool-
box. When parallelising, the process can simulate the three different types of data centre
architectures created at the same time; these architectures are further discussed in the
Data Centre Architecture section. The step following this is one in which all the resource
maps and graphs are created based on the DCN configuration files read in the first step.
These include connectivity, resource, bandwidth, and distance maps/graphs, etc. This
is followed by the resource allocation step in which each request stored in the request
database is scanned and allocated both IT and network resources. The last step in the
simulation involves generating and displaying results and graphs that are used to analyse
the performance of different data centre configurations and resource allocation algorithms
used in the simulator. The following sections provide further implementation details for
each step involved in the simulation process.

Figure 12: High-level simulator flow chart illustrating the six major steps involved in the
simulation process.

3.1 Data Centre & Data Centre Network Generation

3.1.1 Configuration Files

The disaggregated data centres and data centre networks that are simulated are created
based on several parameters specified in the configuration files. These configuration files
use standard YAML syntax and are parsed by the simulator before setting up the parallel
execution environment. Tables 1, 2, 3, 4, 5, 6, 7, 8, 9 show all the configurable parameters
that are used by the simulator. Each of these parameters are completely configurable and
can be changed to different values before starting the simulation.

14

3.1 Data Centre & Data Centre Network Generation

Parameter Description Value

nRacks Number of racks in the data centre 12

nBlades Number of blades in a rack 16

nSlots Number of slots in a blade 8

nUnits Number of units in a slot 8

nTOR Number of ToR switches in a rack 2

nTOB Number of ToB switches in a blade 2

Table 1: Configurable data centre parameters.

Link Description Value

TOR_IntraRack ToR-ToR link distance (Intra-rack) 0.50 m

TOR_InterRack ToR-ToR link distance (Inter-rack) 2.00 m

TOR_TOB ToR-ToB link distance 0.10 m

TOB_IntraBlade ToB-ToB link distance (Intra-rack) 0.05 m

TOB_InterBlade ToB-ToB link distance (Intra-rack) 0.10 m

TOB_slot ToR-Slot link distance 0.05 m

slot Slot-Slot link distance 0.05 m

Table 2: Configurable link distance parameters.

Link Description Value

TOR_TOR Number of channels on a ToR-ToR link 8

TOR_TOB Number of channels on a ToR-ToB link 8

TOB_TOB Number of channels on a ToB-ToB link 1

TOB_slot Number of channels on a ToB-Slot link 4

slot_slot Number of channels on a Slot-Slot link 1

Table 3: Configurable link channel parameters.

Table 1 specifies the number of racks, blades, slots, top-of-rack (ToR), and top-of-blade
(ToB) switches that are used in the data centre.

Table 2 specifies the the link distances between various combinations of nodes in the
data centre. The values used here are based on the standard rack unit (RU) measurements

15

3.1 Data Centre & Data Centre Network Generation

Hierarchy Description Value

rack Rack-rack (ToR-ToR) topology Fully-connected

rack_blade Rack-blade (ToR-ToB) topology Disconnected

blade Blade-blade (ToB-ToB) topology Spine-leaf

blade_slot Blade-slot (ToB-Slot) topology Spine-leaf

slot Slot-Slot topology Disconnected

Table 4: Configurable network topology parameters.

Resource Unit Description Value

CPU Size of each compute unit 4 cores

MEM Size of each memory unit 4 GBs

STO Size of each storage unit 64 GBs

Table 5: Configurable resource unit size parameters.

Switch Description Value

TOD Top of data centre (ToD) switch delay 10 ns

TOR Top of rack (ToR) switch delay 10 ns

TOB Top of blade (ToB) switch delay 10 ns

Table 6: Configurable switch delay parameters.

Constraint Description Value

minChannelLatency Minimum channel latency 5 ns/m

maxChannelBandwidth Maximum channel bandwidth 400 Gb/s

defaultDelay Default in/out delay 200 ns

Table 7: Configurable constraint (bound) parameters.

– all values represent the standard 2U rack unit measurements in meters. These values
represent distances between adjacent racks/blades/slots, whereas distances between non-
adjacent racks/blades/slots have a multiplicative factor that is based on the difference
between the source and destination racks/blades/slots.

Table 3 specifies the number of channels available on each type of link. Inter-switch

16

3.1 Data Centre & Data Centre Network Generation

Setup Type Description Value

homogenCPU Homogeneous compute blade 1

homogenMEM Homogeneous memory blade 2

homogenSTO Homogeneous storage blade 3

heterogenCPU_MEM Heterogeneous compute/memory blade 4

Table 8: Configurable blade type parameters.

Parameter Description Value

racksConfig Configuration of all racks Various

heterogenSplit Compute/memory percentage split 50

Table 9: Other configurable parameters.

links have been set up to contain a higher number of channels as compared to the other
links in the data centre.

Table 4 specifies the network topology at each level in the network hierarchy. Several
different network topologies are available for each level; these are further discussed in the
Data Centre Network Architecture section.

Table 5 specifies the unit sizes for each resource type in the data centre. Slots are filled
with multiple units, each having one of these predefined sizes.

Table 6 specifies the different switch delays in the data centre. Currently, all switches
have the same delay but they can be configured to have different delays.

Table 7 specifies the minimum channel latency, maximum channel bandwidth, and the
default in/out delay constraints.

Table 8 specifies the different values used for configuring the racks in the data centre.
Each blade can be configured with only one of these values. Different combinations of
these are used to create different types of disaggregated architectures.

Table 9 specifies the parameters used to configure all the racks in the data centre.
The racksConfig parameter is a data structure containing nRacks arrays, i.e. cell arrays,
each of size nBlades that are filled with values shown in Table 8. Further details on the
architectures generated using different configurations are provided in the following section.

3.1.2 Data Centre Architecture

Using the parameters specified in the configurations files, different data centre and data
centre network architectures can be created. The main three types of architectures created
were homogeneous racks with homogeneous blades, heterogeneous racks with
homogeneous blades, and heterogeneous racks with heterogeneous blades. These

17

3.1 Data Centre & Data Centre Network Generation

Figure 13: The three different types of architectures that were used in the simulator. The
rack on the left illustrates the architecture of a completely homogeneous rack; the rack in
the centre illustrates the architecture of a heterogeneous rack with homogeneous blades; and
the rack on the right illustrates the architecture of a heterogeneous rack with heterogeneous
blades.

architectures are illustrated in Figure 13. The rack on the left illustrates the architecture
of a homogeneous rack with homogeneous blades containing only CPUs; the rack in the
centre illustrates a heterogeneous rack with homogeneous blades containing both CPUs
and memory in different blades; and the rack on the right illustrates a heterogeneous
rack with heterogeneous blades containing both CPUs and memory in the same blades.
The performance across these architectures can be extremely different depending on the
resource allocation algorithm used; these are discussed in the Results section.

3.1.3 Data Centre Network Architecture

The simulator supports several network topologies for each level in the network hierarchy.
Each of these topologies can be configured using the DCN configuration files parsed by
the simulator. Figure 14 illustrates the graph based hierarchical structure of the data
centre that is created by the simulator. In this graph, all terminal nodes represent slots,
whereas all non-terminal nodes represent switches, i.e. either a ToR or a ToB switch.
Inter-rack, inter-blade and inter-slot networks can be configured to contain either a fully-
connected, line, ring or star topology, whereas networks that connect different levels in the
hierarchy, such as rack-blade, i.e. ToR-ToB, and blade-slot, i.e. ToB-slot, networks can
be configured to contain either a star or spine-leaf topology. These network topologies are
shown in Figure 15. From a network perspective, all racks in the data centre; all blades
within a rack; and all slots within a blade are self-contained. This means that connections
between slots in different blades have to go through the top-of-blade (ToB) switches of
both the source and destination slots; and connections between blades in different racks
have to go through the top-of-rack (ToR) switches of both the source and destination
blades, i.e. there are no direct connections between slots in different blades, and blades

18

3.2 Input Request Generation

Figure 14: An example connectivity graph illustrating the hierarchical structure created
by the simulator; it represents a data centre with three racks, four blades in each rack,
and three slots in each blade; each rack consists of two top-of-rack (ToR) switches and
each blade consists of two top-of-blade switches. Each terminal node represents a slot
whereas each non-terminal nodes represent a switch, either a ToR or ToB switch. Note
that edge/link lengths are not to scale.

in different racks. The number of top-of-rack (ToR) and top-of-blade (ToB) switches, and
their delays can be configured using the DCN configuration files. Each circuit-switched
connection, i.e. a physical channel between two slots, that is created during the allocation
of network resources has a default in/out delay which has been set to 200 ns.

3.2 Input Request Generation

3.2.1 Request Constraints

All values generated for requests are based on a discrete uniform distribution with a min-
imum and a maximum bound. The minimum and maximum bounds for IT and network
resources for a request are provided in Table 10. Figure 16 shows the distributions of
values generated for all input request parameters. It can be seen that except for the
memory parameter, all other parameters follow a discrete uniform distribution that lies

19

3.2 Input Request Generation

Figure 15: Network topologies supported by the simulator.

within the minimum and maximum bounds. For every request, the amount of memory
requested is dependent on the number of CPUs requested; this is generated using a simple
logarithmic formula that relates CPUs and memory requested. Due to the use of the log-
arithmic operation, there is a wide range of CPU values for which a large memory value
is requested, therefore, making the demand for high memory values more likely. This is
why the memory parameter does not completely follow a discrete uniform distribution.

Parameter Minimum Maximum

CPU 1 core 32 cores

Memory 1 GB 32 GBs

Storage 64 GBs 256 GBs

Bandwidth (CPU-Memory) 25 Gb/s 100 Gb/s

Bandwidth (Memory-Storage) 5 Gb/s 25 Gb/s

Latency (CPU-Memory) 300 ns 600 ns

Latency (Memory-Storage) 600 ns 1200 ns

Holding time 1 s 1000 s

Table 10: Input/Request IT and network resource constraints/bounds.

20

3.3 Resource Allocation

Figure 16: Graphs illustrating the discrete uniform distributions (with minimum and
maximum bounds) for each input request parameter.

Network requirements for connections between CPU and memory units are a lot
stricter in comparison to those between memory and storage units. The CPU-memory
and memory-storage latency requirements differ by a factor of two, whereas their band-
width requirements differ by a factor of five; this can be seen in Table 10.

3.2.2 Request Database

The request database is created to store all generated requests for resource allocation and
future reference. For each request, it contains several fields that are populated and up-
dated throughout the simulation. These fields include the IT resources (CPU, memory,
and storage) requirements, network resource (bandwidth) requirements and latency con-
straints, holding time, request status and failure causes, etc. An example entry from the
request database is shown in Table 11. At the end of the simulation, this database is also
used to generate results as it keeps track of resource allocation status, failure cause, and
allocation time, etc. for every request.

3.3 Resource Allocation

The resource allocation step is where requests get extracted from the request database and
get their required IT and network resources allocated. Several algorithms were developed
for IT and network resource allocation; these are discussed in the Resource Allocation
Algorithms section. All algorithms that were developed perform several common micro-

21

3.3 Resource Allocation

Parameter/Constraint Description Value

CPU Number of CPU units requested 32 cores

Memory Number of memory units requested 10 GBs

Storage Number of storage units requested 128 GBs

Bandwidth
(CPU-Memory) CPU-Memory bandwidth requested 75 Gb/s

Bandwidth
(Memory-Storage) Memory-Storage bandwidth requested 10 Gb/s

Latency
(CPU-Memory) CPU-Memory latency requested 600 ns

Latency
(Memory-Storage) Memory-Storage latency requested 1000 ns

Holding time Resource holding time requested 475 s

Arrival time Arrival time of request 220 s

IT allocation status IT resource allocation status Success

Network allocation
status Network resource allocation status Success

Request status Request status Success

IT resources
allocated IT allocated node references Various

Network resources
allocated Network link references Various

Path latencies Latencies of paths routed Various

IT failure cause IT allocation failure case None

Network failure
cause Network allocation failure case None

Allocation time Time taken to find and allocate
resources 2.36 s

Table 11: An example entry extracted from the request database containing several fields
such as the IT and network resource requirements, holding time, IT and network resource
allocation statuses, etc.

steps, such as extracting the request from the database, scanning for resources, allocating
resources, and updating several graphs/maps that track IT and network resource utilisa-
tion, etc.

22

3.4 Results & Analysis

Figure 17: Example heat map for a data centre containing heterogeneous racks with
homogeneous blades. Each large rectangle represents a rack; each row within this large
rectangle represents a blade and each column represents a slot within a blade. Black, white
and grey rectangles represent CPU, memory and storage slots respectively.

3.4 Results & Analysis

This step involves generating and displaying results and graphs for all types of architec-
tures simulated. These graphs represent various performance metrics such as blocking
probability, IT and network resource utilisation, data centre heat maps, etc. The sim-
ulator also supports dynamic updates for heat maps; these updated heat maps can be
visualised as each request gets it’s required resources allocated. Discussions of all results
for all different architectures simulated are provided in the Results section. An example
heat map of a data centre containing heterogeneous racks with homogeneous blades is
illustrated in Figure 17.

23

4 Resource Allocation Algorithms

4 Resource Allocation Algorithms

Resource allocation is a process of assigning and managing resources. In terms of the
algorithms developed, these are IT and network resources that are required to successfully
serve a request. Since developing a globally optimal solution to such a problem is incred-
ibly difficult, the application of heuristics that are locally optimal, and those that take
a strategic approach to resource allocation can yield higher utilisation and success rates.
As discussed previously, disaggregation in particular has a huge impact on the latency
and bandwidth available/required on networks connecting different resources as these re-
sources can be placed far apart (possibly in different racks). Therefore, the algorithms
need to carefully consider these factors when allocating network resources in disaggre-
gated architectures. Different resource allocation algorithms can perform differently on

Figure 18: A simple algorithmic flow-chart illustrating the steps involved in the resource
allocation process.

different disaggregated architectures; hence, to reduce/avoid this difference in performance
across architectures and to keep the algorithms independent of the architectures they are
run/used on, appropriate measures were taken when designing these algorithms. For every
algorithm the standard flow is the same; in chronological order, it involves generating and
reading a request, allocating IT resources, and allocating network resources including up-
dating several databases where necessary. These databases include the request database;
IT resource and connectivity database; and network resource database.

24

4.1 Formal Definition

Algorithm 1: Simulator script common to all algorithms.
1: script Simulator
2: config ← Read YAML configuration files
3: requestDatabase← Generate input request database
4: Setup parallel simulation environment
5: for thread t in threadPool do
6: switch t do
7: case 1 ▷ Thread 1 (Type 1)
8: Initialise and start simulation
9: resultsDatabaseT1← simStart(config, requestDatabase, t)

10: case 2 ▷ Thread 2 (Type 2)
11: Initialise and start simulation
12: resultsDatabaseT2← simStart(config, requestDatabase, t)
13: case 3 ▷ Thread 3 (Type 3)
14: Initialise and start simulation
15: resultsDatabaseT3← simStart(config, requestDatabase, t)
16: end switch
17: end for
18: Generate and display results and graphs for all types
19: end script

The pseudocode for the script used to initialise, run and manage the entire simulation
is provided in Algorithm 1 and the pseudocode for the function used to initialise the
simulation for each type of disaggregated architecture is provided in Algorithm 2.

Algorithm 2: Simulator function common to all algorithms.
Require: config: Configuration, requestDatabase: Request database, t: Thread ID

1: procedure simStart(config, requestDatabase, t)
2: G← Initialise and create data centre graphs
3: for each request r in requestDatabase do
4: ▷ Allocate IT and network resources for request r
5: allocationResult← resourceAllocation(config,G, r)
6: Update requestDatabase
7: end for
8: return requestDatabase
9: end procedure

4.1 Formal Definition

4.1.1 Bin packing problem

In computational complexity theory, the standard bin packing problem is a combinatorial
NP-hard problem (whereas deciding the optimal number of bins is a NP-complete prob-
lem). [13] It requires objects of different volumes to be packed into a finite number of bins

25

4.1 Formal Definition

or containers each of volume V in a way that minimises the number of bins used. Different
variations of of bin packing exist and can be applied in multiple dimensions. Despite the
bin packing problem being classed as a NP-hard problem, several optimal solutions can
be produced with the use of sophisticated algorithms. [13]

Formalisation
Given a bin S of size V and a list of items with sizes a1, ... , an to pack, the problem is to
find an integer number B and a B – partition S1 ∪ ... ∪ SB of the set {1, ... , n} such that∑

i∈Sk
ai ⩽ V ∀k = 1, ... , B. A solution is said of be optimal if it has minimal B. [13] In

simple terms, the problem is to find the minimal number of bins in which all items in the
list can be packed. An integer linear optimisation model of problem is as follows: [14]

minimise B =

n∑
i=1

yi

subject to B ⩾ 1,
n∑

j=1

ajxij ⩽ V yi, ∀i ∈ {1, ... , n}

n∑
i=1

xij = 1, ∀j ∈ {1, ... , n}

yi ∈ {0, 1}, ∀i ∈ {1, ... , n}

xij ∈ {0, 1}, ∀i ∈ {1, ... , n} ∀j ∈ {1, ... , n}

where yi =

1 if bin i is used

0 otherwise

xij =

1 if item j is assigned to bin i

0 otherwise

The problem that the resource allocation algorithms developed try to solve can be reduced
to the bin-packing problem that is implemented on a connected graph. While standard
algorithms for the bin packing problem try to find an optimal (minimal) number of bins in
which all items can be packed, the resource allocation algorithms developed do the inverse
– given a predefined (set) number of bins, pack as many items as possible. The items here
refer to IT (CPU, memory, and storage) and network resources across all requests. This
can also be visualised as a 2-D bin packing problem, where in the first dimension, the
algorithms try to maximise the IT resources allocated, and in the second dimension, they
try to minimise the network resources allocated while satisfying the constraints – these
constraints are the latency and bandwidth requirements of a request. Another way to look
at the problem would be to say serve as many requests as possible without saturating the
data centre network.

There are two major versions of algorithms, online and offline algorithms. In the

26

4.1 Formal Definition

online version only a single request is known at one time, whereas in the offline version
all requests are known upfront; the resource allocation algorithms developed implement
the online version. It is obvious that with the online version always finding an optimal
solution is difficult as future requests are unknown but with a heuristic approach and
approximations the algorithms developed can achieve a near optimal solution.

4.1.2 Problem Formalisation

In terms of the algorithms developed, given requests r1, ... , rm, where only a single request
ri is known at a point in time, a list of required IT resources a1, ... , aq, and a list of
required connections c1, ... , ct, each containing edges e1, ... , en, assigned to connect all
required IT resources for a particular request; the problem is to minimise the total allocated
bandwidth B across the entire data centre network while satisfying every request’s latency
and bandwidth constraints; and maximise the total allocated IT resources S across all
requests. Similar to the linear optimisation model for the bin packing problem, one for
the resource allocation problem is as follows:

minimise B =
m∑
k=1

t∑
i=1

cikeij , ∀j ∈ {1, ... , n}

subject to ebij ⩾ rbk, ∀i ∈ {1, ... , t} ∀j ∈ {1, ... , n} ∀k ∈ {1, ... ,m}

B ⩽ B′

cli ⩽ rlk, ∀i ∈ {1, ... , t} ∀k ∈ {1, ... ,m}

maximise S =

m∑
k=1

aik, ∀i ∈ {1, ... , q}

subject to S ⩽ S′

where rb is the required bandwidth for request r

rl is the required latency for request r

eb is the bandwidth allocated on edge e

cl is the latency on connection c

B′ is the total network bandwidth

S′ is the total IT resources

cik =

1 if connection i is assigned to request k

0 otherwise

eij =

rb if edge j is allocated in connection i

0 otherwise

aik =

1 if resource i is allocated to request k

0 otherwise

27

4.1 Formal Definition

Let G = (V,E) be an undirected connected graph that represents the entire data
centre, where, V is the set of all vertices present in the data centre, and E is the set of
edges, each of which is a set of two vertices. All vertices in the graph represent either an
IT resource slot or a switch and all edges in the graph represent a network link present in
the data centre network.

Let n = |V | be the total number of vertices in the graph, and m = |E| be the total
number of edges in the graph.

Let vi represent the ith vertex in the set of vertices V and ei represent the ith edge in
the set of edges E. Using these denotations, we get the following:

Vi = {vi ∀i | i ∈ N, 1 ⩽ i ⩽ n}

Ei = {ei ∀i | i ∈ N, 1 ⩽ i ⩽ m}

Instead of using an unique identifier for an edge, an alternative representation would be
to use superscripts that specify its source and destination vertices, for example, ei,j would
represent an edge between vertices vi and vj ; but this notation is avoided for simplicity.

All vertices and edges have a minimum and maximum capacity bound. For vertices, it
is the amount of IT resource units (CPU, memory or storage) present at a vertex, and the
capacity on the ith vertex is represented by vic. For edges, it is the amount of bandwidth
available on an edge, and the capacity on the ith edge is represented by eic. Let vic,min and
vic,max be the minimum and maximum capacities of a vertex vi; and eic,min and eic,max be
the minimum and maximum capacities of an edge ei. We then define the sets of capacities
as follows:

Vc = {vic ∈ N | vic,min ⩽ vic ⩽ vic,max, i ∈ N, 1 ⩽ i ⩽ n}

Ec = {eic ∈ N | eic,min ⩽ eic ⩽ eic,max, i ∈ N, 1 ⩽ i ⩽ m}

Each edge also has a distance associated with it, which defines its latency. Let eid be
the distance of the ith edge ei and eil be its latency. For the linear relation between an
edge’s distance and its latency, we define a new variable f . It follows that the latency eil
on an edge ei is f × eid. We then define the set of distances and latencies as follows:

Ed = {eid ∈ R | eid > 0, i ∈ N, 1 ⩽ i ⩽ m}

El = {eil ∈ R | eil > 0, eil = f × eid, f ∈ R, i ∈ N, 1 ⩽ i ⩽ m}

For a request r, let rc be the number of CPU units required, rm be the number of
memory units required, rs be the number of storage units required, rb,cm be the CPU-
memory bandwidth required, rb,ms be the memory-storage bandwidth required, rl,cm be
the maximum acceptable CPU-memory latency, and rl,ms be the maximum acceptable
memory-storage latency.

For every request, a new weighted graph is created G′ = (V,E′) where E′ is a new set

28

4.2 Graph Theory Algorithms

of edges where every edge is weighted on both its latency El and bandwidth Ec. Let this
weighting factor be f ′. We then define the set of new weighted edges E′

c as follows:

E′
c =

{
e
′i
c ∈ R | e′ic = f ′ ×

(
1− e

′′i
c

eic

)
+ (1− f ′)×

eil
el,max

, i ∈ N, i ⩽ m, f ′ ∈ R, f ′ ⩽ 1

}

where e
′i
c represents the newly weighted ith edge, e′′ic represents its updated capacity, i.e.

unused/remaining capacity, eic represents its original capacity, eil represents its latency
and el,max represents the maximum latency in the network. It is important to note that
every ith edge contained in E′

c satisfies the minimum required bandwidth for a request,
e
′i
c ⩾ min(rb,cm, rb,ms). The new weighted graph is used for allocating network resources

for a request; without this weighting, i.e. only considering either bandwidth or latency,
there is a high probability of the request getting blocked/dropped since either constraints
might not be satisfied when being checked one after the other.

To successfully allocate the resources required by a request r, the algorithm chooses and
allocates sets of CPU, memory, and storage vertices that are all connected to each other
and satisfy the required bandwidth and latency constraints. A more detailed formalisation
could be made to represent different sets for different types of resources allocated including
the link bandwidth and latency connecting these resources; providing these specific details
formally can make the problem appear more complicated, hence, it is being avoided.
Informally, the latency on connections between every CPU vertex to every other CPU
and memory vertices lc ⩽ rlcm; and the latency on all other connections lo ⩽ rlms. The
bandwidth on each edge on paths connecting these allocated CPU vertices to other CPU
and memory vertices bc ⩾ rbcm; and the bandwidth on edges on paths connecting all other
resources bo ⩾ rbms. After a request is successfully allocated, the sets of vertex capacities
Vc and edge capacities Ec are updated ensuring that each element vic ⩾ vic,min in Vc and
eic ⩾ eic,min in Ec respectively.

4.2 Graph Theory Algorithms

4.2.1 Breadth-first Search (BFS)

Breadth-first search (BFS) is an algorithm for traversing and searching tree and graph
data structures. It traverses a graphs starting at an arbitrary vertex and searches all it’s
neighbouring vertices before moving to the next level of vertices. The algorithm uses a
queue to store all discovered vertices; and all queued vertices get dequeued in a first-in first-
out (FIFO) manner. The pseudocode for the BFS algorithm is provided in Algorithm 3.

Algorithm 3: Breadth-first search (BFS) algorithm
Require: G: Input graph, s: Start vertex

1: procedure BFS(G, s)
2: for each vertex v in G do ▷ Initialise each vertex
3: v.distance←∞

29

4.2 Graph Theory Algorithms

4: v.parent← null
5: end for
6: Q← [] ▷ Create an empty queue
7: s.distance← 0
8: Q.enqueue(s) ▷ Enqueue start vertex
9: while Q ̸= [] do ▷ Run until queue is empty

10: current← Q.dequeue()
11: for each vertex v adjacent to current do
12: if v.distance =∞ then
13: v.distance← current.distance+ 1
14: v.parent← current
15: Q.enqueue(v) ▷ Enqueue vth neighbour
16: end if
17: end for
18: end while
19: end procedure

The worst case time complexity of BFS is O(|V |+ |E|), where |V | is the number of vertices
and |E| is the number of edges in the input graph. Note that O(E) can vary between O(1)

and O(|V |2) depending on the sparsity of the input graph. The BFS algorithm is used
to find and allocate IT resources in both the locality based algorithms discussed in the
Network-Unaware Locality Based Resource Allocation and Network-Aware Locality Based
Resource Allocation sections.

4.2.2 K Shortest Path – Yen’s Algorithm

The K shortest path algorithm is a generalisation and an extension to standard shortest
path algorithms, where instead of just a single shortest path between two vertices, k

shortest paths are found. To find the shortest path between two vertices, standard shortest
path algorithms such as Dijkstra’s algorithm or Bellman Ford algorithm can be used and
are extended to find more than one path. Several different implementations for the K
shortest path algorithm exist – the one used in the simulator is called the Yen’s Algorithm.
The pseudocode for Yen’s algorithm is provided in Algorithm 4.

Algorithm 4: Yen’s K shortest path algorithm
Require: G: Input graph, u: Source vertex, v: Destination vertex, K: K-shortest paths

1: procedure YenKSP(G, u, v,K)
2: A[0]← Dijkstra(G, u, v) ▷ Determine shortest path from u to v
3: B[0]← [] ▷ Initialise empty heap
4: for k from 1 to K do
5: for i from 0 to size(A[k − 1])− 1 do
6: spurV ertex← A[k − 1].vertex(i) ▷ Retrieved from k − 1 shortest path
7: rootPath← A[k − 1].vertices(0, i) ▷ Path from source to spur vertex
8: for each path p in A do
9: if rootPath = p.vertices(0, i) then

10: Remove p.edge(i, i+ 1) from G

30

4.2 Graph Theory Algorithms

11: end if
12: end for
13: for each vertex rootPathV ertex in rootPath except spurV ertex do
14: Remove rootPathV ertex from G
15: end for
16: spurPath← Dijkstra(G, spurV ertex, v)
17: totalPath← rootPath+ spurPath
18: B.append(totalPath)
19: Restore edges to G ▷ Add edges removed from graph
20: Restore vertices in rootPath to G ▷ Add vertices removed from graph
21: if B = [] then ▷ Handle case when there are no spur paths
22: break
23: end if
24: B.sort() ▷ Sort potential k-shortest paths by cost
25: A[k]← B[0] ▷ Store kth path with lowest cost
26: B.pop()
27: end for
28: end for
29: return A ▷ Return k shortest paths
30: end procedure

Yen’s algorithm computes single-source K-shortest loopless paths for a graph with
non-negatively weighted edges. The K shortest path algorithm is used to find/route paths
between allocated IT resource vertices that have an acceptable latency and to allocate
network resources, i.e. bandwidth, on every path. This implementation of K shortest
paths is used in all the resource allocation algorithms developed and is discussed in more
detail in the sections ahead.

The implementation of Yen’s algorithm in the simulator uses the Dijkstra’s algorithm
to find the single source shortest path. The pseudocode for Dijkstra’s algorithm is provided
in Algorithm 5. The runtime complexity of Yen’s algorithm highly depends on the shortest
path algorithm used; and its worst case time complexity when using Dijkstra’s algorithm
is O(K|V |(|E|+ |V | log |V |)), where |V | represents the number of vertices, |E| represents
the number of edges in the graph, and K represents the number of shortest paths to be
found.

Dijkstra’s algorithm is used to find the shortest paths from the source vertex to all
other vertices in the graph. The algorithm can be modified to accept a destination vertex;
where every extracted vertex on line 12 (in Algorithm 5) would need to be checked to
match the destination vertex, and if a match is found, it could break out of the main
loop on line 11. Following this, a path from source to destination could be extracted
by reversing the order of predecessor vertices. When using a minimum-priority queue
implemented by a Fibonacci heap, the worst-case time complexity of Dijkstra’s algorithm
is O(|E| + |V | log |V |)), where |V | is the number of vertices in the graph and |E| is the
number of edges in the graph.

31

4.3 First Fit Resource Allocation

Algorithm 5: Dijkstra’s algorithm
Require: G: Input graph, s: Start vertex, d: Destination vertex (Optional)

1: procedure Dijkstra(G, s, d)
2: Q← [] ▷ Create vertex set
3: dist[s]← 0
4: for each vertex v in G do ▷ Initialise each vertex
5: if v ̸= s then
6: dist[v]←∞
7: prev[v]← null
8: Q.addWithPriority(v, dist[v]) ▷ Add all vertices to Q
9: end if

10: end for
11: while Q ̸= [] do ▷ Run until queue is empty
12: u← Q.extractMin() ▷ Extract vertex with minimum distance
13: for each vertex v adjacent to u do ▷ Where v is still in Q
14: alt← dist[u] + length(u, v)
15: if alt < dist[v] then ▷ Relax
16: dist[v]← alt
17: prev[v]← u
18: Q.decreasePriority(v, alt)
19: end if
20: end for
21: end while
22: return dist[], prev[] ▷ Return distances and predecessors
23: end procedure

4.3 First Fit Resource Allocation

The first fit resource allocation algorithm is the simplest of algorithms developed. In this
algorithm resources are allocated on a first-fit basis. This means that every request is
allocated the first available (IT) resource nodes found. Although this algorithm is simple,
finding optimal solutions for a large number of requests is difficult. When looking for
IT resource nodes, the algorithm does not consider the availability of network resources,
therefore, there is a possibility of it choosing nodes that have IT resources available but
links connecting these nodes are either completely saturated or do not satisfy the mini-
mum bandwidth requirement for a request. This can result in a high blocking probability,
i.e. a high request drop rate, particularly due to the algorithm failing when allocating net-
work resources. For the allocation of network resources, the optimised network allocation
algorithm is used in conjunction with all IT resource allocation algorithms. Even when us-
ing the most optimised network allocation algorithm, choosing and allocating IT resource
nodes without considering the network resources can lead to poor performance. The
network-aware locality based algorithm, discussed in the Network-Aware Locality Based
Resource Allocation section, exploits this; and amongst other performance improvements,
it is seen to have a significant drop in blocking probability.

32

4.3 First Fit Resource Allocation

Algorithm 6: First fit resource allocation algorithm
Require: G: Data centre graphs, C: Data centre config, R: Request

1: procedure firstFit(G,C,R)
2: available.Cpu← find slots ⩾ 1 in C.CpuLocations
3: available.Mem← find slots ⩾ 1 in C.MemLocations
4: available.Sto← find slots ⩾ 1 in C.StoLocations
5: if available.Cpu < R.Cpu then ▷ Inadequate cpu resources
6: ITallocation← Failure
7: ITfailureCause← Cpu
8: else if available.Mem < R.Mem then ▷ Inadequate memory resources
9: ITallocation← Failure

10: ITfailureCause←Mem
11: else if available.Sto < R.Sto then ▷ Inadequate storage resources
12: ITallocation← Failure
13: ITfailureCause← Sto
14: else
15: loopIncrement← C.nSlots× C.nBlades ▷ Size of a rack
16: slot← startSlot
17: while slot ⩽ C.totalSlots do ▷ To try multiple combinations
18: found.Cpu← 0 ▷ Initialise resource counter variables
19: found.Mem← 0
20: found.Sto← 0
21: index.Cpu← 1 ▷ Initialise resource index variables
22: index.Mem← 1
23: index.Sto← 1
24: ITres← [] ▷ Initialise IT resource ‘tracker’
25: for each slot s in C.ITres do
26: switch (C.ITresTypes(s)) do ▷ Different resource types
27: case Cpu ▷ Find cpu slots
28: if found.Cpu < R.Cpu then
29: units← C.ITres(s)
30: found.Cpu← found.Cpu+ units
31: ITres[1, index.Cpu]← {s, units}
32: index.Cpu← index.Cpu+ 1
33: end if
34: case Mem ▷ Find memory slots
35: if found.Mem < R.Mem then
36: units← C.ITres(s)
37: found.Mem← found.Mem+ units
38: ITres[2, index.Mem]← {s, units}
39: index.Mem← index.Mem+ 1
40: end if
41: case Sto ▷ Find storage slots
42: if found.Sto < R.Sto then
43: units← C.ITres(s)
44: found.Sto← found.Sto+ units
45: ITres[3, index.Sto]← {s, units}
46: index.Sto← index.Sto+ 1

33

4.3 First Fit Resource Allocation

47: end if
48: end switch
49: end for
50: if R.Cpu and R.Mem and R.Sto found then ▷ All resources found
51: ITallocation← Success
52: ITfailureCause← None
53: break
54: else
55: ITallocation← Failure
56: Evaluate failure cause
57: Update ITfailureCause
58: end if
59: if ITallocation = Success then
60: [NETallocation,NETres]← netAllocation(G,C,R, ITres)
61: if NETallocation = Success then
62: break
63: else
64: Remove failure nodes in C.ITres ▷ Remove failure nodes
65: end if
66: else
67: break ▷ Failed due to unavailability of IT resources
68: end if
69: slot← slot+ loopIncrement ▷ Jump to next rack
70: end while
71: end if
72: if ITallocation = Success and NETallocation = Success then
73: Update C.ITres ▷ Remove allocated IT resources
74: Update G.bMap ▷ Remove allocated network resources
75: end if
76: return ITallocation, ITres, NETallocation, NETres
77: end procedure

The pseudocode for the first fit algorithm is provided in Algorithm 6. All instances
of Cpu, Mem, and Sto refer to CPU, memory and storage respectively; and all slots
refer to terminal nodes/vertices in the data centre. Note that all pseudocodes provided
in this thesis only contain major (logic) sections of the algorithms and their actual im-
plementations in a specific language require several other factors to be considered. In
summary, the first fit resource allocation algorithm performs well early on when both the
IT and network resources have a low utilisation, but as these resources start to saturate,
the blocking probability for subsequent requests increases significantly. The latencies on
network paths allocated by this algorithm can be worse as compared to those allocated
by the other algorithms. Detailed results on its performance are discussed in the Results
section.

Algorithm 7: Optimised network resource allocation algorithm
Require: G: Data centre graphs, C: Data centre config, R: Request, N : Allocated nodes

34

4.3 First Fit Resource Allocation

1: procedure netAllocation(G,C,R,N)
2: bMap← G.bMap ▷ Copy original bandwidth map
3: dMap← G.dMap ▷ Copy original distance map
4: Remove all edges in bMap and dMap where eb < min(R.bcm, R.bms)
5: maxD ← maximum distance in dMap
6: f ← 0.5 ▷ Weightage factor
7: wGraph←∞ ▷ Initialise new weighted graph
8: NETres← [] ▷ Initialise network resource ‘tracker’
9: for each edge e in bMap do

10: if dMap(e) ̸=∞ and bMap(e) > 0 then
11: wGraph(e)← f × (1− bMap(e)

G.bMap(e)) + (1− f)(G.dMap(e)
maxD)

12: end if
13: end for
14: K ← 3 ▷ K-shortest paths to find
15: for each node u in N do
16: for each node v in N do
17: paths← YenKSP(wGraph, u, v,K)
18: Find link latency on every path
19: Find switch latency on every path
20: L(u, v, k)← lLat+ sLat+ dLat ▷ Total latency on kth path
21: end for
22: end for
23: for each node u in N do
24: for each node v in N do
25: for each path k in paths do
26: if L(u, v, k) ⩽ R.lcm or R.lms then ▷ Context dependent
27: L′(u, v, k)← 1 ▷ Acceptable latency path
28: else
29: L′(u, v, k)← 0 ▷ Unacceptable latency path
30: end if
31: end for
32: end for
33: end for
34: for each node u in N do
35: for each node v in N do
36: for each path k in paths do
37: Check L′ to see if at least a single acceptable path has been found
38: Track failure nodes in failureNodes
39: Update acceptableLatencyPathsFound
40: end for
41: end for
42: end for
43: if acceptableLatencyPathsFound = True then
44: latency ← Success
45: else
46: latency ← Failure ▷ Failed due to latency
47: NETfailureCause← Latency
48: end if
49: if latency = Success then

35

4.3 First Fit Resource Allocation

50: for each node u in N do
51: for each node v in N do
52: bMapRevert← bMap ▷ Copy to revert if kth path fails
53: for each path k in paths do
54: if L′(u, v, k) = 1 then
55: for each edge e in path k do
56: if bMap(e) ⩾ R.bcm or R.bms then ▷ Context dependent
57: Allocate and update bandwidth on bMap(e)
58: else
59: Track failure nodes in failureNodes
60: break
61: end if
62: end for
63: if bandwidth allocation on path k is successful then
64: Track all successful paths in NETres
65: Track latency on all allocated paths
66: Update acceptableBandwidthPathsFound
67: else
68: bMap← bMapRevert ▷ Since kth path failed
69: end if
70: end if
71: end for
72: end for
73: end for
74: end if
75: if acceptableBandwidthPathsFound = True then
76: bandwidth← Success
77: else
78: bandwidth← Failure ▷ Failed due to bandwidth
79: NETfailureCause← Bandwidth
80: end if
81: if latency = Success and bandwidth = Success then
82: NETallocation← Success ▷ Network allocation successful
83: NETfailureCause← None
84: G.bMap← bMap ▷ Update original bandwidth map
85: else
86: NETallocation← Failure ▷ Need to find new set of IT resources
87: end if
88: return NETallocation, failureNodes, NETres
89: end procedure

The pseudocode for the optimised network allocation algorithm that is used in con-
junction with all algorithms is provided in Algorithm 7. After the initialisation stage, a
new weighted graph is created as shown on line 11 (in Algorithm 7) where every edge is
weighted on both it’s latency and available bandwidth based on the factor f . A factor
value close to 1 favours bandwidth, whereas a factor value close to 0 favours latency. For
the simulations both factor were weighted equally and the value for f was set to 0.5. The
weighting is important to decrease the probability of a certain potential network path

36

4.4 Best Fit Resource Allocation

being blocked when either factors are considered one after the other. Line 26 and 56, both
have different latency and bandwidth checks for CPU-CPU, CPU-memory, CPU-storage,
memory-memory, and memory storage depending on the constraints defined by a request.
After allocating the bandwidth on each edge of a path bMap is updated to reflect the new
available bandwidth on that edge. If all k-paths, i.e. connections, between a pair of IT
resource nodes fail, these failure nodes are tracked and returned; this is done to prevent
the IT resource allocation algorithms from considering these nodes when it (scans for and)
allocates a new set of IT resource nodes. The variables lLat, sLat, and dLat on line 20
refer to link, i.e. edge, switch, and default in/out latencies. The value for K was set to
3 – this ensures that exactly three shortest paths are found between every allocated IT
resource node.

4.4 Best Fit Resource Allocation

The best fit resource allocation algorithm is one in which the best possible combination of
IT resources are allocated to every request. In comparison to the first fit algorithm, the
major difference in its implementation is that different types of resources are stored and
managed separately (using different data structures). The advantage of this is that the
algorithm can jump to different racks for every resource type, whereas this is not possible
in the first fit algorithm since all IT resources are managed using a single data structure.
As mentioned previously, for allocating network resources, the same optimised network
allocation algorithm is used (Refer to pseudocode provided in Algorithm 7). The best
fit algorithm has a significantly better performance in all aspects, especially in terms of
blocking probability – a lot more requests are successfully allocated their required resources
in comparison to the first fit algorithm. The pseudocode for the best fit resource allocation
algorithm is provided in Algorithm 8.

Algorithm 8: Best fit resource allocation algorithm
Require: G: Data centre graphs, C: Data centre config, R: Request

1: procedure firstFit(G,C,R)
2: available.Cpu← find slots ⩾ 1 in C.CpuLocations
3: available.Mem← find slots ⩾ 1 in C.MemLocations
4: available.Sto← find slots ⩾ 1 in C.StoLocations
5: if available.Cpu < R.Cpu then ▷ Inadequate cpu resources
6: ITallocation← Failure
7: ITfailureCause← Cpu
8: else if available.Mem < R.Mem then ▷ Inadequate memory resources
9: ITallocation← Failure

10: ITfailureCause←Mem
11: else if available.Sto < R.Sto then ▷ Inadequate storage resources
12: ITallocation← Failure
13: ITfailureCause← Sto
14: else
15: loopIncrement← C.nSlots× C.nBlades ▷ Size of a rack

37

4.4 Best Fit Resource Allocation

16: slotLimit← max(C.CpuLocations, C.MemLocations, C.StoLocations)
17: slot← 1
18: while slot < slotLimit do ▷ To try multiple combinations
19: found.Cpu← 0 ▷ Initialise resource counter variables
20: found.Mem← 0
21: found.Sto← 0
22: index.Cpu← 1 ▷ Initialise resource index variables
23: index.Mem← 1
24: index.Sto← 1
25: cpuStart← 1 ▷ Initialise start slot numbers
26: memStart← 1
27: stoStart← 1
28: ITres← [] ▷ Initialise IT resource ‘tracker’
29: for each slot s from cpuStart in C.CpuResources do
30: if found.Cpu < R.Cpu then ▷ Find cpu slots
31: units← C.CpuResources(s)
32: found.Cpu← found.Cpu+ units
33: ITres[1, index.Cpu]← {s, units}
34: index.Cpu← index.Cpu+ 1
35: else
36: break
37: end if
38: end for
39: for each slot s from memStart in C.MemResources do
40: if found.Mem < R.Mem then ▷ Find memory slots
41: units← C.MemResources(s)
42: found.Mem← found.Mem+ units
43: ITres[2, index.Mem]← {s, units}
44: index.Mem← index.Mem+ 1
45: else
46: break
47: end if
48: end for
49: for each slot s from stoStart in C.StoResources do
50: if found.Sto < R.Sto then ▷ Find storage slots
51: units← C.StoResources(s)
52: found.Sto← found.Sto+ units
53: ITres[3, index.Sto]← {s, units}
54: index.Sto← index.Sto+ 1
55: end if
56: end for
57: if R.Cpu and R.Mem and R.Sto found then ▷ All resources found
58: ITallocation← Success
59: ITfailureCause← None
60: break
61: else
62: ITallocation← Failure
63: Evaluate failure cause
64: Update ITfailureCause and ITcheckBreak

38

4.5 Network-Unaware Locality Based Resource Allocation

65: end if
66: if ITallocation = Success then
67: [NETallocation,NETres]← netAllocation(G,C,R, ITres)
68: if NETallocation = Success then
69: break
70: else
71: Remove failure nodes in C.CpuResources
72: Remove failure nodes in C.MemResources
73: Remove failure nodes in C.StoResources
74: end if
75: else
76: if ITcheckBreak = 1 then
77: break ▷ Failed due to unavailability of IT resources
78: end if
79: end if
80: cpuStart← cpuStart+ loopIncrement ▷ Increment all slot indices
81: memStart← memStart+ loopIncrement
82: stoStart← stoStart+ loopIncrement
83: slot← slot+ loopIncrement ▷ Jump to next rack
84: end while
85: end if
86: if ITallocation = Success and NETallocation = Success then
87: Update C.ITres ▷ Remove allocated IT resources
88: Update G.bMap ▷ Remove allocated network resources
89: end if
90: return ITallocation, ITres, NETallocation, NETres
91: end procedure

4.5 Network-Unaware Locality Based Resource Allocation

The network-unaware locality based algorithm uses the breadth-first search (BFS) algo-
rithm to allocate IT resources. The advantage of using BFS is that it can find IT resource
nodes that are neighbouring each other (making it locality aware); this can be particularly
useful with requests that have low latency constraints. The algorithm starts scanning for
IT resources on a node of a specific resource type that has the highest contention ratio
(CR) and looks for other IT resource nodes neighbouring this node. The contention ra-
tio for each resource types is simply the ratio between the units required (for a request)
and the total units available in the data centre. Using contention ratios hugely improves
performance as it first scans and allocates resources for which the least number of units
are available, making it more likely for a request to be successfully allocated its required
resources. In comparison to the first fit and best fit algorithm, a huge improvement in
performance was observed, resulting in higher utilisation and lower blocking probability.
The pseudocode for the network-unaware locality based algorithm is provided in Algo-
rithm 9. Once again, the network resource allocation algorithm used is the one provided
in Algorithm 7.

39

4.5 Network-Unaware Locality Based Resource Allocation

Algorithm 9: Network-unaware locality based resource allocation algorithm
Require: G: Data centre graphs, C: Data centre config, R: Request

1: procedure nuLocalityBased(G,C,R)
2: available.Cpu← find slots ⩾ 1 in C.CpuLocations
3: available.Mem← find slots ⩾ 1 in C.MemLocations
4: available.Sto← find slots ⩾ 1 in C.StoLocations
5: cr.Cpu← R.Cpu

available.Cpu ▷ Cpu contention ratio
6: cr.Mem← R.Cpu

available.Mem ▷ Memory contention ratio
7: cr.Sto← R.Cpu

available.Sto ▷ Storage contention ratio
8: cr.Max← max(cr.Cpu, cr.Mem, cr.Sto) ▷ Find maximum contention ratio
9: loopIncrement← C.nSlots× C.nBlades ▷ Size of a rack

10: for each c in cr do ▷ To try multiple contention ratios
11: s← cr.Max
12: cr.Max← Update to new maximum contention ratio
13: switch s do
14: case Cpu
15: if available.Cpu < R.Cpu then ▷ Inadequate cpu resources
16: ITallocation← Failure
17: ITfailureCause← Cpu
18: else
19: while slot ⩽ C.CpuResources do
20: [ITallocation, ITres]← BFS(G, slot, R)
21: if ITallocation = Success then
22: [NETallocation,NETres]← netAllocation(G,C,R, ITres)
23: if NETallocation = Success then
24: break
25: else
26: Remove failure nodes in G.ITres
27: end if
28: else
29: Evaluate failure cause
30: Update ITfailureCause
31: break
32: end if
33: slot← slot+ loopIncrement
34: end while
35: end if
36: if ITallocation = Success and NETallocation = Success then
37: break
38: end if
39: case Mem
40: if available.Mem < R.Mem then ▷ Inadequate memory resources
41: ITallocation← Failure
42: ITfailureCause←Mem
43: else
44: while slot ⩽ C.MemResources do
45: [ITallocation, ITres]← BFS(G, slot, R)
46: if ITallocation = Success then

40

4.5 Network-Unaware Locality Based Resource Allocation

47: [NETallocation,NETres]← netAllocation(G,C,R, ITres)
48: if NETallocation = Success then
49: break
50: else
51: Remove failure nodes in G.ITres
52: end if
53: else
54: Evaluate failure cause
55: Update ITfailureCause
56: break
57: end if
58: slot← slot+ loopIncrement
59: end while
60: end if
61: if ITallocation = Success and NETallocation = Success then
62: break
63: end if
64: case Sto
65: if available.Sto < R.Sto then ▷ Inadequate storage resources
66: ITallocation← Failure
67: ITfailureCause← Sto
68: else
69: while slot ⩽ C.StoResources do
70: [ITallocation, ITres]← BFS(G, slot, R)
71: if ITallocation = Success then
72: [NETallocation,NETres]← netAllocation(G,C,R, ITres)
73: if NETallocation = Success then
74: break
75: else
76: Remove failure nodes in G.ITres
77: end if
78: else
79: Evaluate failure cause
80: Update ITfailureCause
81: break
82: end if
83: slot← slot+ loopIncrement
84: end while
85: end if
86: if ITallocation = Success and NETallocation = Success then
87: break
88: end if
89: if ITallocation = Failure then ▷ Inadequate IT resources
90: break
91: end if
92: end switch
93: end for
94: if ITallocation = Success and NETallocation = Success then
95: Update C.ITres ▷ Remove allocated IT resources

41

4.6 Network-Aware Locality Based Resource Allocation

96: Update G.bMap ▷ Remove allocated network resources
97: end if
98: return ITallocation, ITres, NETallocation, NETres
99: end procedure

4.6 Network-Aware Locality Based Resource Allocation

The network-aware locality based algorithm is similar to the network-aware locality based
algorithm but it uses the modified breadth-first search (mBFS) algorithm. The advantage
of using the mBFS algorithm is that it finds and allocates IT resource nodes that are not
only neighbouring each other, but also considers the network resources connecting these
nodes. Considering the network resources when allocating IT resources nodes improves
performance as it significantly reduces the probability of failure when allocating network
resources. The pseudocode for mBFS is provided in Algorithm 10. The rest of the algo-
rithm is the same as the network-unaware locality based algorithm, except on lines 20, 45,
and 70 (in Algorithm 9), instead of invoking the standard BFS method, the modified-BFS
(mBFS) method is invoked. The results for this algorithm are discussed in the Results
section.

Algorithm 10: Modified breadth-first search (mBFS) algorithm
Require: G: Data centre graphs, s: Start vertex, R: Request

1: procedure mBFS(G, s,R)
2: bMap← G.bMap ▷ Copy original bandwidth map
3: dMap← G.dMap ▷ Copy original distance map
4: Remove all edges in bMap and dMap where eb < min(R.bcm, R.bms)
5: for each vertex v in G do ▷ Initialise each vertex
6: v.distance←∞
7: v.parent← null
8: end for
9: Q← [] ▷ Create an empty queue

10: s.distance← 0
11: Q.enqueue(s) ▷ Enqueue start vertex
12: ITres← Find IT resources on start vertex s
13: while Q ̸= [] do ▷ Run until queue is empty
14: current← Q.dequeue()
15: neighbours← All vertices adjacent to current
16: ▷ High bandwidth links have a higher priority (Network aware)
17: neighbours′ ← Sort neighbours in descending order
18: for each vertex v in neighbours′ do
19: if v.distance =∞ then
20: v.distance← current.distance+ 1
21: v.parent← current
22: Q.enqueue(v) ▷ Enqueue vth neighbour
23: ITres← Find IT resources on vertex v
24: if R.Cpu and R.Mem and R.Sto found then ▷ All resources found

42

4.6 Network-Aware Locality Based Resource Allocation

25: breakWhile← True
26: break
27: end if
28: end if
29: end for
30: if breakWhile = True then
31: ITallocation← Success
32: ITfailureCause← None
33: break
34: else
35: ITallocation← Failure
36: ITfailureCause← Evaluate failure cause
37: break
38: end if
39: end while
40: return ITres, ITallocation
41: end procedure

43

5 Results

5 Results

The results discussed are sectioned based on different performance metrics. These include
blocking probability, IT & network utilisation, allocation time, latency, and an overall
performance comparison. It is important to note that to make a fair comparison between
the performance of all algorithms across all architectures a predefined request database,
i.e. a set of dynamic requests, was used during the simulations. Both static and dynamic
requests were seen to have a very similar performance.

5.1 Blocking Probability

Blocking probability is the ratio between the number of blocked requests and the total
number of requests generated up to a certain point in time. It is considered to be a
standard performance metric for allocation algorithms, where a low blocking probability
implies that an algorithm is efficient. As discussed previously, there is a significant drop
in blocking probability when moving from the first fit algorithm up to the network-aware
locality based algorithm and this is illustrated in the blocking probability graphs in Fig-
ure 19. For every algorithm, the homogeneous rack with homogeneous blade architecture
has the highest blocking probability in comparison to all other architectures simulated.
This is primarily due to the higher requirement of network resources, i.e. bandwidth, for
connecting the IT resources nodes – for every connection between nodes, multiple extra
links are required in comparison to the heterogeneous rack with homogeneous blade and
heterogeneous rack with heterogeneous blade architectures. This additional bandwidth
requirement/allocation leads to a higher network resource utilisation (for every request),
which in turn results in a higher blocking probability as subsequent requests have a lower
amount of network resources available. Most requests that are blocked due to unavailabil-
ity of network resources are caused by the lack of bandwidth on links connecting switches
between different levels in the network hierarchy. Links connecting different switches, both
within and between hierarchies, such as ToR-ToR and ToR-ToB, etc. tend to saturate far
more quickly as compared to other links. In both the network-unaware locality based and
network-aware locality based algorithms, heterogeneous rack with homogeneous blade, and
heterogeneous rack with heterogeneous blade architectures have identical blocking prob-
abilities, but if the CPU-memory latency constraint by requests were to get more strict,
the latter is likely to have a better performance, i.e. a lower blocking probability.

In terms of blocking probability, the network-aware locality based algorithm has the
best performance in comparison to all other algorithms, with the first request being blocked
at approximately 810 for the homogeneous rack with homogeneous blade architecture,
and approximately 925 for both the heterogeneous rack with homogeneous blade and
heterogeneous rack with heterogeneous blade architectures.

Although disaggregated architectures allow for dynamic bandwidth allocation, the pri-
mary bottleneck in such architectures can be bandwidth and latency, both because of
the resources being placed far apart (in different racks). The cause for requests being

44

5.1 Blocking Probability

(a) First fit.

(b) Best fit.

blocked for all algorithms across all architectures is illustrated in Figure 20. It can be seen
that majority of the requests are blocked due to unavailability of network resources, i.e.
bandwidth. There are a few requests that are blocked due to latency – this signifies that
the algorithms were unable to find IT resource nodes and/or connections between these

45

5.1 Blocking Probability

(c) Network unaware locality based.

(d) Network aware locality based.

Figure 19: Comparison between blocking probabilities obtained from different resource
allocation algorithms.

nodes that satisfied the latency constraints. This is more frequent in the homogeneous
rack with homogeneous blade architecture due to the different types of resources being

46

5.1 Blocking Probability

(a) First fit.

(b) Best fit.

placed far apart (in different racks). It is obvious that failures due to unavailability of net-
work resources (bandwidth and/or latency) gets more frequent as the network utilisation

47

5.1 Blocking Probability

(c) Network unaware locality based.

(d) Network aware locality based.

Figure 20: Comparison between blocking causes obtained from different resource alloca-
tion algorithms.

48

5.2 IT & Network Utilisation

increases and the network starts to saturate. When simulating both the network-unaware
locality based and network-aware locality based algorithms for the heterogeneous rack
with homogeneous blade, and heterogeneous rack with heterogeneous blade architectures,
all requests that were blocked were due to the unavailability of CPUs. This signifies that
both the locality based algorithms are more efficient in comparison to the first fit and best
fit algorithms; these algorithms were able to completely utilise the IT resources (CPUs
in these results) for these architectures with no failures/blocking being caused due to the
unavailability of network resources. An important point to note is that there are infinitely
many possible combinations, for allocating both IT resource nodes and network resources,
but the algorithms developed try only a very small subset of these combinations as trying
all combinations is computationally infeasible. An algorithm can be said to be relatively
more efficient if it can allocate a set of requests using less tries, i.e. attempts with different
combinations, in comparison to another algorithm.

5.2 IT & Network Utilisation

(a) First fit.

As the primary goal of the algorithms developed was to maximise IT resource utilisa-
tion whilst minimising network utilisation, graphs illustrating this have been provided in
Figures 21 and 22. Figure 21 shows the utilisation of both IT (CPU, memory, and storage)
and network resources at intervals of every hundred requests for all algorithms, whereas
Figure 22 shows the relation between network utilisation and IT resource utilisation for all
algorithms. Once again, it can be seen that the network-aware locality based algorithm has

49

5.2 IT & Network Utilisation

(b) Best fit.

(c) Network unaware locality based.

the best performance as it is able to completely utilise all CPUs whilst only utilising 16%
of the network resources for the heterogeneous rack with heterogeneous blade architecture;

50

5.2 IT & Network Utilisation

(d) Network aware locality based.

Figure 21: Comparison between IT and network resource utilisation obtained from dif-
ferent resource allocation algorithms.

a similar trend follows for the other architectures. When using the same set of requests on
the network-unaware locality based algorithm, the network utilisation increases to 20%.
With the first fit and best fit algorithms, the network utilisation increases to 10% and 30%
whilst only utilising 32% and 92% of available CPUs respectively. An important point
to note is that the network utilisation for the first fit algorithm is low in comparison to
the other algorithms not because of it being more efficient in terms of network allocation
but because of it having a higher blocking probability – as more requests get blocked,
the network utilisation stays low. Once a type of resource is completely utilised, all sub-
sequent requests are blocked; this is the point at which the utilisation for all resources
stabilise. Achieving the maximum IT resources utilisation with a low network utilisation
(and being able to successfully allocate the required resources for more requests) proves
that the network-aware locality based algorithm has the best performance in terms of the
goal the algorithms try to achieve. For the three different types of architectures simulated,
the heterogeneous rack with heterogeneous blade was seen to have the best performance
in comparison to the other architectures. An example illustrating this can be found on
Figure 21(d); after a thousand requests, both the heterogeneous rack with homogeneous
blade and heterogeneous rack with heterogeneous blade architectures are able to com-
pletely utilise all the CPU resources but the former has a network utilisation of 24%,
whereas the latter has a network utilisation of 16%. A similar analysis can be made based

51

5.2 IT & Network Utilisation

on the network utilisation versus IT resource utilisation graphs illustrated in Figure 22.

(a) First fit.

(b) Best fit.

52

5.2 IT & Network Utilisation

(c) Network unaware locality based.

(d) Network aware locality based.

Figure 22: Comparison between network vs IT resource utilisation obtained from different
resource allocation algorithms.

53

5.3 Allocation Time

5.3 Allocation Time

The time taken of find and allocate the required resources can heavily dictate the per-
formance of an algorithm. Using efficient searching (sorting, and scanning) algorithms
and data structures; and optimising the resource allocation algorithms can significantly
reduce the allocation time. Figure 23 illustrates the allocation time for all requests across
all algorithms. These graphs only contain data points for requests that were successfully
allocated. A common trend that can be observed for all algorithms across all architectures
is that as the network utilisation increases the allocation time increases. The reason be-
hind this is fairly obvious; due to the increase in network utilisation, certain combinations
of IT resources chosen by an algorithm have a higher probability of failure during the
network allocation phase, therefore, leading to an increased number of tries with different
combinations, which directly affects the allocation time.

(a) First fit.

For the first fit algorithm, once the network utilisation reaches 5%, there is a sharp
increase in the allocation time. For the other algorithms, the allocation time is not as
drastically affected by the network utilisation. Once again, moving from the first fit
algorithm to the network-aware locality based algorithm, there is a huge improvement
in allocation time. Across all requests, the network-based locality aware algorithm has
the best performance with only a few requests taking over six seconds for resources to be
allocated. For majority of the requests, the allocation time on the homogeneous rack with
homogeneous blade architecture drops significantly in the network-aware locality based
algorithm as compared to the network-unaware locality based algorithm. The is because

54

5.3 Allocation Time

(b) Best fit.

(c) Network unaware locality based.

the network-aware locality based algorithm chooses IT resources based on the network
resources available on links connecting these nodes, this drastically reduces the probability

55

5.4 Latency

(d) Network aware locality based.

Figure 23: Comparison between allocation times and network utilisation obtained from
different resource allocation algorithms.

of failure during the network allocation phase. In summary, across all algorithms, the
heterogeneous rack with homogeneous blade architecture has the best performance in
terms of allocation time.

5.4 Latency

Latency is an important factor that needs to be considered when evaluating an algorithm,
especially for disaggregated architectures as resource pooling can have a huge impact on the
latencies available between (different types of) IT resources. Figure 24 illustrates scatter
plots for all algorithms across all architectures that represent the latencies allocated for
all requests. Different latencies such as CPU-CPU, CPU-memory, etc. have been plotted
using different colours. These graphs only contain data points for requests that were
successfully allocated; and data points for requested/maximum acceptable latency for each
request have not been plotted not only because of all allocated latencies being way below
the requested latency but also to improve the readability of graphs. It can be seen that the
heterogeneous rack with heterogeneous blade architecture has the lowest latencies allocated
across all algorithms; this is because CPU and memory slots are located on the same blade
and connections between these slots only require a single switch. This can be beneficial for
systems and applications for which low latency is critical, particularly the latency between
CPU and memory. The fist fit algorithm has the highest latencies allocated with a few

56

5.4 Latency

(a) First fit.

(b) Best fit.

reaching very close to 500 ns, whereas the best fit and network-unaware locality based

57

5.4 Latency

(c) Network unaware locality based.

(d) Network aware locality based.

algorithms have very similar latencies allocated. Majority of latencies allocated with the

58

5.5 Overall Performance Comparison

(e) Allocated average latency cumulative distribution function (CDF).

Figure 24: Comparison between latency allocations obtained from different resource
allocation algorithms.

network-aware locality based algorithm are below 350 ns with only a few allocated between
350-400 ns.

Figure 24(e) illustrates a cumulative distribution function (CDF) for average latencies
allocated for all algorithms across all architectures. It is important to note that distribution
functions only consider average latencies of allocated requests and these have not been
normalised; this is why some algorithms/architectures may appear to have a better overall
distribution of average allocated latencies in comparison to other. For example, the best fit
algorithm appears to have allocated better latencies in comparison to both the network-
unaware and network-aware locality based algorithms for the heterogeneous rack with
homogeneous blade architecture even though the former has a higher blocking probability.
To make a fair comparison, both the blocking probability and latency graphs need to be
analysed together.

5.5 Overall Performance Comparison

Figure 25 illustrates graphs for an overall performance comparison between all algorithms,
where (a) illustrates the best, i.e. lowest, blocking probability for every algorithm and (b)
illustrates the total simulation time1 for allocating resources across thousand requests.
The first fit algorithm performs best on the heterogeneous rack with homogeneous blade

1Simulation times are platform dependent and results discussed here are based on simulations being
run on MATLAB R2015b for Microsoft Windows 10.

59

5.5 Overall Performance Comparison

(a) Lowest blocking probability for different algorithms.

(b) Total allocation time for 1000 requests across all algorithms.

Figure 25: Overall performance comparison between different algorithms.

60

5.5 Overall Performance Comparison

architecture, whereas the best fit, network-unaware and network-aware locality based al-
gorithms perform best on the heterogeneous rack with heterogeneous blade architecture.
The network-aware locality based algorithm has the lowest total simulation time in com-
parison to all other algorithms as its probability of failure for a certain combination of
resources, both IT and network, is significantly lower than the probability of failure for
other algorithms. Its failure probability is low as a result of it choosing and allocating IT
resource nodes based on the network resources available on links connecting these nodes.
All simulation times discussed here are for the most optimised versions of the algorithms.
Although the best fit and network-aware locality based algorithms have a similar simula-
tion time, the former performs worse in terms of blocking probability, resource utilisation,
and latency.

The heterogeneous rack with homogeneous blade and heterogeneous rack with hetero-
geneous blade architectures have an identical performance in terms of blocking probabil-
ity but the former has a higher network utilisation as expected due to different types of
resources being placed in separate blades. Although there is an increase in network util-
isation for the homogeneous rack with homogeneous blade architecture, its performance
in terms of blocking probability is only slightly worse as compared to the other architec-
tures when using the network-aware locality based algorithm; this is primarily due to the
increase in the required network resources leading to links between switches saturating
far more quickly. It also tends to have higher latencies allocated in comparison to other
algorithms but this is expected as different types of resources are located on different
racks.

61

6 Conclusion

6 Conclusion

Although disaggregated architectures demand higher network resources to connect differ-
ent resources in separate blades/racks, it’s potential benefits in other aspects cannot be
underestimated. Provided that the difference in latencies between aggregated and disag-
gregated architectures is marginal (with the use of super-fast interconnect technologies)
and appropriate configuration of IT and network resources in disaggregated architectures
such as placing both CPU and memory blades in the same rack can lead to significantly
higher resource utilisation whilst yielding a similar (application) performance to that ob-
tained in traditional data centre architectures. Disaggregation results in lower total cost
of ownership and management; and dramatically improves the scope for scalability. This
thesis introduced some core concepts about disaggregated data centre architectures, in-
cluding several different types of disaggregated architectures, the benefits (and drawbacks)
of disaggregation in general, and the potential advantages of each type of disaggregated ar-
chitecture. It also discussed all the resource allocation algorithms developed, optimisation
efforts and an analysis on their performance across all disaggregated architectures simu-
lated using different performance metrics such as blocking probability, resource utilisation,
etc. Based on the analysis, it was found that the network-aware locality based algorithm
had the best performance. Another important finding was that when allocating IT re-
sources, considering and evaluating the network resources available on links connecting
these IT resources is crucial in increasing the probability of success, and reducing network
utilisation and allocation time. In terms of the disaggregated architectures simulated, the
heterogeneous rack with heterogeneous blade architecture had the best performance; the
primary reason being the lower demand for network resources as both CPU and mem-
ory slots are contained in the same blade. Another potential advantage of this is that
latency critical applications are likely to have better performance on this architecture in
comparison to other architectures.

62

7 Future Work

7 Future Work

Since disaggregated data centres is a fairly new concept, there is an incredible amount
of scope for future work. The algorithms developed could be modified and improved to
consider a more realistic environment that includes both inter-arrival rates and holding
times. Since realistic requirements of virtual machines have a finite period for which
resources are allocated, modelling these features could show the dynamic performance of
disaggregated architectures and the algorithms developed. The dynamic behaviour would
impact resource utilisation and based of an analysis, algorithms could be optimised and
configurations of IT resources could be modified to improve overall performance. A basic
implementation of inter-arrival rate has already been modelled in the simulator, but to be
able to completely analyse the dynamic behaviour of the architecture/algorithm holding
time would need to be modelled. General code optimisation such as the use of appropriate
data structures, reduced memory access, etc. could potentially improve the performance
of the algorithms. Dynamic allocation is another area that could be considered to improve
the performance, where allocated resources for certain requests could be moved/transferred
to accommodate new requests if required – this could lead to lower blocking probabilities
and higher IT resource utilisation. The simulator could be modified to consider dropped
requests after a certain amount of time to check if they can be allocated. Modelling
caches, i.e. cache memories, is another area that could be looked into. Designing a latency
aware algorithm could benefit latency-critical applications/requests and could potentially
increase the overall resource utilisation. Simulations could be run for different network
topologies, switch latencies/delays, switch configurations, CPU-memory distribution in
the heterogeneous rack with heterogeneous blade architecture, etc. to evaluate the change
in the performance of the algorithms/architectures.

63

References

[1] Intel Corporation. Intel ® Rack Scale Architecture: Faster Service Delivery and Lower
TCO. url: http://www.intel.co.uk/content/www/uk/en/architecture-and-
technology/intel-rack-scale-architecture.html (Accessed: April 19, 2016)
(see pp. 1, 3, 7).

[2] Tencent and Intel Corporation. Tencent Explores Datacenter Resource-Pooling Using
Intel ® Rack Scale Architecture (Intel ® RSA). url: http://www.intel.co.uk/
content/dam/www/public/us/en/documents/white- papers/rsa- tencent-
paper.pdf (Accessed: April 1, 2016) (see pp. 2, 5–8, 10, 11).

[3] Michael P. Kassner. Silicon photonics: still waiting. July 2015. url: http://www.
datacenterdynamics.com/it-networks/silicon-photonics-still-waiting/
94303.fullarticle (Accessed: April 15, 2016) (see pp. 2, 3).

[4] Intel Corporation. Moving data with silicon and light. url: http://www.intel.co.
uk/content/www/uk/en/research/intel-labs-silicon-photonics-research.
html (Accessed: April 14, 2016) (see pp. 1, 3, 12).

[5] Wim Bogaerts, Martin Fiers, and Pieter Dumon. “Design challenges in silicon pho-
tonics”. In: Selected Topics in Quantum Electronics, IEEE Journal of 20.4 (2014),
pp. 1–8 (see p. 1).

[6] Rick Ramsey. Making hyperscale solutions available for comms service providers.
February 2016. url: http://cloudblog.ericsson.com/blog/making-hyperscale-
solutions - available - for - comms - service - providers (Accessed: April 19,
2016) (see p. 3).

[7] Sangjin Han, Norbert Egi, Aurojit Panda, Sylvia Ratnasamy, Guangyu Shi, and
Scott Shenker. “Network support for resource disaggregation in next-generation dat-
acenters”. In: Proceedings of the Twelfth ACM Workshop on Hot Topics in Networks.
ACM. 2013, p. 10 (see pp. 6, 7, 9).

[8] Ericsson. Next-generation Datacenter Infrastructure. February 2015. url: http :
//www.ericsson.com/res/docs/whitepapers/next-generation-data-centers.
pdf (Accessed: March 12, 2016) (see pp. 8, 10, 11).

[9] VMware. Building a Data Center via Virtualization. url: http://www.vmware.
com/uk/products/datacenter-virtualization (Accessed: March 18, 2016) (see
p. 8).

[10] Cisco Systems. Data Center Architecture Overview. url: http://www.cisco.com/
c/en/us/td/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCInfra_
1.html (Accessed: March 21, 2016) (see pp. 12, 13).

[11] Bulent Abali, Richard J Eickemeyer, Hubertus Franke, Chung-Sheng Li, and Marc A
Taubenblatt. “Disaggregated and optically interconnected memory: when will it be
cost effective?” In: arXiv preprint arXiv:1503.01416 (2015) (see p. 13).

x

http://www.intel.co.uk/content/www/uk/en/architecture-and-technology/intel-rack-scale-architecture.html
http://www.intel.co.uk/content/www/uk/en/architecture-and-technology/intel-rack-scale-architecture.html
http://www.intel.co.uk/content/dam/www/public/us/en/documents/white-papers/rsa-tencent-paper.pdf
http://www.intel.co.uk/content/dam/www/public/us/en/documents/white-papers/rsa-tencent-paper.pdf
http://www.intel.co.uk/content/dam/www/public/us/en/documents/white-papers/rsa-tencent-paper.pdf
http://www.datacenterdynamics.com/it-networks/silicon-photonics-still-waiting/94303.fullarticle
http://www.datacenterdynamics.com/it-networks/silicon-photonics-still-waiting/94303.fullarticle
http://www.datacenterdynamics.com/it-networks/silicon-photonics-still-waiting/94303.fullarticle
http://www.intel.co.uk/content/www/uk/en/research/intel-labs-silicon-photonics-research.html
http://www.intel.co.uk/content/www/uk/en/research/intel-labs-silicon-photonics-research.html
http://www.intel.co.uk/content/www/uk/en/research/intel-labs-silicon-photonics-research.html
http://cloudblog.ericsson.com/blog/making-hyperscale-solutions-available-for-comms-service-providers
http://cloudblog.ericsson.com/blog/making-hyperscale-solutions-available-for-comms-service-providers
http://www.ericsson.com/res/docs/whitepapers/next-generation-data-centers.pdf
http://www.ericsson.com/res/docs/whitepapers/next-generation-data-centers.pdf
http://www.ericsson.com/res/docs/whitepapers/next-generation-data-centers.pdf
http://www.vmware.com/uk/products/datacenter-virtualization
http://www.vmware.com/uk/products/datacenter-virtualization
http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCInfra_1.html
http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCInfra_1.html
http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCInfra_1.html

[12] Wikipedia. Rack unit — Wikipedia, The Free Encyclopedia. 2016. url: https :
//en.wikipedia.org/w/index.php?title=Rack_unit&oldid=713940169 (Ac-
cessed: March 27, 2016) (see p. 13).

[13] Wikipedia. Bin packing problem — Wikipedia, The Free Encyclopedia. 2016. url:
https://en.wikipedia.org/w/index.php?title=Bin_packing_problem&oldid=
717045280 (Accessed: April 22, 2016) (see pp. 25, 26).

[14] Silvano Martello and Paolo Toth. Bin-packing problem. 1990. url: http://www.or.
deis.unibo.it/kp/Chapter8.pdf (Accessed: April 23, 2016) (see p. 26).

[15] Michael P. Kassner. Disaggregated data centers: great idea, but not just yet. July
2015. url: http://www.datacenterdynamics.com/servers-storage/disaggregated-
data - centers - great - idea - but - not - just - yet / 94473 . fullarticle (Ac-
cessed: April 15, 2016).

[16] Ericsson and Intel Corporation. Ericsson Introduces A Hyperscale Cloud Solution.
url: http://www.intel.co.uk/content/dam/www/public/us/en/documents/
solution - briefs / ericsson - hyperscale - cloud - solution - brief . pdf (Ac-
cessed: March 15, 2016).

[17] Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ranganathan, Steven K
Reinhardt, and Thomas F Wenisch. “Disaggregated memory for expansion and shar-
ing in blade servers”. In: ACM SIGARCH Computer Architecture News. Vol. 37. 3.
ACM. 2009, pp. 267–278.

[18] Kevin Lim, Yoshio Turner, Jose Renato Santos, Alvin AuYoung, Jichuan Chang,
Parthasarathy Ranganathan, and Thomas F Wenisch. “System-level implications
of disaggregated memory”. In: High Performance Computer Architecture (HPCA),
2012 IEEE 18th International Symposium on. IEEE. 2012, pp. 1–12.

[19] Silicon photonics takes next step toward high bandwidth future. 2015. url: http:
//optics.org/news/6/3/24 (Accessed: April 13, 2016).

[20] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. “A scalable, com-
modity data center network architecture”. In: ACM SIGCOMM Computer Commu-
nication Review 38.4 (2008), pp. 63–74.

[21] Andreas Wolke, Boldbaatar Tsend-Ayush, Carl Pfeiffer, and Martin Bichler. “More
than bin packing: Dynamic resource allocation strategies in cloud data centers”. In:
Information Systems 52 (2015), pp. 83–95.

[22] Christoforos Kachris, Konstantinos Kanonakis, and Ioannis Tomkos. “Optical in-
terconnection networks in data centers: recent trends and future challenges”. In:
Communications Magazine, IEEE 51.9 (2013), pp. 39–45.

[23] Frank David John Dunstan. “An algorithm for solving a resource allocation prob-
lem”. In: Operational Research Quarterly (1977), pp. 839–851.

xi

https://en.wikipedia.org/w/index.php?title=Rack_unit&oldid=713940169
https://en.wikipedia.org/w/index.php?title=Rack_unit&oldid=713940169
https://en.wikipedia.org/w/index.php?title=Bin_packing_problem&oldid=717045280
https://en.wikipedia.org/w/index.php?title=Bin_packing_problem&oldid=717045280
http://www.or.deis.unibo.it/kp/Chapter8.pdf
http://www.or.deis.unibo.it/kp/Chapter8.pdf
http://www.datacenterdynamics.com/servers-storage/disaggregated-data-centers-great-idea-but-not-just-yet/94473.fullarticle
http://www.datacenterdynamics.com/servers-storage/disaggregated-data-centers-great-idea-but-not-just-yet/94473.fullarticle
http://www.intel.co.uk/content/dam/www/public/us/en/documents/solution-briefs/ericsson-hyperscale-cloud-solution-brief.pdf
http://www.intel.co.uk/content/dam/www/public/us/en/documents/solution-briefs/ericsson-hyperscale-cloud-solution-brief.pdf
http://optics.org/news/6/3/24
http://optics.org/news/6/3/24

[24] Albert Greenberg, James R Hamilton, Navendu Jain, Srikanth Kandula, Changhoon
Kim, Parantap Lahiri, David A Maltz, Parveen Patel, and Sudipta Sengupta. “VL2:
a scalable and flexible data center network”. In: ACM SIGCOMM computer com-
munication review. Vol. 39. 4. ACM. 2009, pp. 51–62.

xii

Appendices

A Source Code Reference

Given below is a list containing references to all the MATLAB source files that were
developed and/or modified during the course of this project.

Source File Author Purpose/Modifications/Source

configType1.yaml A. Tibrewal Configuration file (Type 1)

configType2.yaml A. Tibrewal Configuration file (Type 2)

configType3.yaml A. Tibrewal Configuration file (Type 3)

BFS.m A. Tibrewal Contains customised breadth-first
search algorithm

displayResults.m A. Tibrewal Used for generating and displaying
results

inputGeneration.m A. Tibrewal Used for generating input requests

networkAllocation.m A. Tibrewal Used for allocating network
resource

networkCreation.m A. Tibrewal Used for creating and initialising
data centre graphs

plotDataCenterLay-
out.m

A. Tibrewal Used for displaying data centre
graphs

plotHeatMap.m A. Tibrewal Used for displaying data centre
heat maps

plotUsage.m A. Tibrewal Used for displaying data centre
usage dynamically

resourceAllocation.m A. Tibrewal Used for allocating IT resources

resultsGen.m A. Tibrewal Used for generating and displaying
simulation results

runCompleteSimula-
tion.m

A. Tibrewal Used for initialising and managing
the entire simulation

Continued on next page

xiii

Continued from previous page

simStart.m A. Tibrewal Used for starting the simulation for
each type of data centre
configuration

requestDB.mat A. Tibrewal Used for storing the request
database

graphkshortestpaths.m E. David Amir Contains implementation of Yen’s
algorithm in MATLAB
Source :http://www.mathworks.
com/matlabcentral/
fileexchange/35397-k-
shortest-paths-in-a-graph-
represented-by-a-sparse-
matrix--yen-s-algorithm-

logb.m B. Shoelson Contains logarithmic base
conversion function
Source: http://uk.mathworks.
com/matlabcentral/
fileexchange/14866-logb

M-utilib library
(Contains multiple
source files)

E.Bezzeccheri MATLAB utility library
Source: https:
//github.com/edobez/M-utilib

subtightplot.m F.G. Nievinski
P. Kumpulainen
S. Nikolay

Used for improving the layout of
figures and plots/graphs
Source: http://www.mathworks.
com/matlabcentral/
fileexchange/39664-
subtightplot

yamlmatlab library
(Contains multiple
source files)

J. Cigler
J. Siroky
P. Tomasko

YAML parser for MATLAB
Google Code Archive
Source: https://code.google.
com/archive/p/yamlmatlab/

Table 12: List of source files developed and/or used through the course of this project.

xiv

http://www.mathworks.com/matlabcentral/fileexchange/35397-k-shortest-paths-in-a-graph-represented-by-a-sparse-matrix--yen-s-algorithm-
http://www.mathworks.com/matlabcentral/fileexchange/35397-k-shortest-paths-in-a-graph-represented-by-a-sparse-matrix--yen-s-algorithm-
http://www.mathworks.com/matlabcentral/fileexchange/35397-k-shortest-paths-in-a-graph-represented-by-a-sparse-matrix--yen-s-algorithm-
http://www.mathworks.com/matlabcentral/fileexchange/35397-k-shortest-paths-in-a-graph-represented-by-a-sparse-matrix--yen-s-algorithm-
http://www.mathworks.com/matlabcentral/fileexchange/35397-k-shortest-paths-in-a-graph-represented-by-a-sparse-matrix--yen-s-algorithm-
http://www.mathworks.com/matlabcentral/fileexchange/35397-k-shortest-paths-in-a-graph-represented-by-a-sparse-matrix--yen-s-algorithm-
http://uk.mathworks.com/matlabcentral/fileexchange/14866-logb
http://uk.mathworks.com/matlabcentral/fileexchange/14866-logb
http://uk.mathworks.com/matlabcentral/fileexchange/14866-logb
https://github.com/edobez/M-utilib
https://github.com/edobez/M-utilib
http://www.mathworks.com/matlabcentral/fileexchange/39664-subtightplot
http://www.mathworks.com/matlabcentral/fileexchange/39664-subtightplot
http://www.mathworks.com/matlabcentral/fileexchange/39664-subtightplot
http://www.mathworks.com/matlabcentral/fileexchange/39664-subtightplot
https://code.google.com/archive/p/yamlmatlab/
https://code.google.com/archive/p/yamlmatlab/

B Software/Tools Listing

Given below is the list of all the software tools that were used during the course of this
project.

Software Producer/Developer Version License

MATLAB MathWorks R2015b Academic License

Git Linus Torvalds 2.7.4 GNU General Public License v2

Table 13: List of software/tools used through the course of this project.

xv

	Abstract
	Declaration & Disclaimer
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations
	Introduction
	Data Centre Architectures
	Aggregated Server-Centric Architecture
	Disaggregated Resource-Centric Architecture
	Data Centre Network (DCN) Architecture

	Simulator Framework
	Data Centre & Data Centre Network Generation
	Configuration Files
	Data Centre Architecture
	Data Centre Network Architecture

	Input Request Generation
	Request Constraints
	Request Database

	Resource Allocation
	Results & Analysis

	Resource Allocation Algorithms
	Formal Definition
	Bin packing problem
	Problem Formalisation

	Graph Theory Algorithms
	Breadth-first Search (BFS)
	K Shortest Path – Yen's Algorithm

	First Fit Resource Allocation
	Best Fit Resource Allocation
	Network-Unaware Locality Based Resource Allocation
	Network-Aware Locality Based Resource Allocation

	Results
	Blocking Probability
	IT & Network Utilisation
	Allocation Time
	Latency
	Overall Performance Comparison

	Conclusion
	Future Work
	References
	Appendices
	Source Code Reference
	Software/Tools Listing

